1
|
Williams GJ, Hong AM, Thompson JF. Treatment of melanoma brain metastases with radiation and immunotherapy or targeted therapy: A systematic review with meta-analysis. Crit Rev Oncol Hematol 2024; 202:104462. [PMID: 39097248 DOI: 10.1016/j.critrevonc.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Patients with melanoma brain metastases are now frequently treated with immunotherapy (IMT) or targeted therapy (TT). The aim of this systematic review was to determine relative survival outcomes after combining radiotherapy (RT) with IMT or TT. METHODS 126 studies were identified by searching Medline, Embase and Cochrane CENTRAL (to 7Aug 2023). RESULTS Multivariable analyses showed that the risk of death was reduced by 30 % for combined stereotactic radiosurgery (SRS)+IMT compared to IMT alone, by 65 % for patients treated with SRS+anti-PD1 and by 59 % for patients treated with SRS+anti-CTLA4 and/or anti-PD1 (HR 0.41, 95 %CI 0.31-0.54) compared to SRS alone. Four studies compared SRS+anti-CTLA4 with SRS+anti-PD1, showing a 42 % reduction in risk of death with SRS+anti-PD1 treatment. Combined treatment with SRS+TT showed a 59 % reduction in risk compared to SRS alone. CONCLUSION The systematic review suggests a substantial survival benefit for combining SRS with IMT or TT for patients with melanoma brain metastases.
Collapse
Affiliation(s)
- Gabrielle J Williams
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Angela M Hong
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; The Mater Hospital, North Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The Mater Hospital, North Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Ahmad A, Khan P, Rehman AU, Batra SK, Nasser MW. Immunotherapy: an emerging modality to checkmate brain metastasis. Mol Cancer 2023; 22:111. [PMID: 37454123 PMCID: PMC10349473 DOI: 10.1186/s12943-023-01818-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM.
Collapse
Affiliation(s)
- Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Tracz JA, Donnelly BM, Ngu S, Vojnic M, Wernicke AG, D'Amico RS. The abscopal effect: inducing immunogenicity in the treatment of brain metastases secondary to lung cancer and melanoma. J Neurooncol 2023; 163:1-14. [PMID: 37086369 DOI: 10.1007/s11060-023-04312-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE The phenomenon of radiation therapy (RT) causing regression of targeted lesions as well as lesions outside of the radiation field is known as the abscopal effect and is thought to be mediated by immunologic causes. This phenomena has been described following whole brain radiation (WBRT) and stereotactic radiosurgery (SRS) of brain metastasis (BM) in advanced melanoma and non-small-cell lung cancer (NSCLC). We systematically reviewed the available literature to identify which radiation modality and immunotherapy (IT) combination may elicit the abscopal effect, the optimal timing of RT and IT, and potential adverse effects inherent to the combination of RT and IT. METHODS Using PRISMA guidelines, a search of PubMed, Medline, and Web of Science was conducted to identify studies demonstrating the abscopal effect during treatment of NSCLC or melanoma with BM. RESULTS 598 cases of irradiated BM of melanoma or NSCLC in 18 studies met inclusion criteria. The most commonly administered ITs included PD-1 or CTLA-4 immune checkpoint inhibitors (ICI), with RT most commonly administered within 3 months of ICI. Synergy between ICI and RT was described in 16 studies including evidence of higher tumor response within and outside of the irradiated field. In the 12 papers (n = 232 patients) that reported objective response rate (ORR) in patients with BM treated with RT and concurrent systemic IT, the non-weighted mean ORR was 49.4%; in the 5 papers (n = 110 patients) that reported ORR for treatment with RT or IT alone, the non-weighted mean ORR was 27.8%. No studies found evidence of significantly increased toxicity in patients receiving RT and ICI. CONCLUSION The combination of RT and ICIs may enhance ICI efficacy and induce more durable responses via the abscopal effect in patients with brain metastases of melanoma or NSCLC.
Collapse
Affiliation(s)
- Jovanna A Tracz
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Brianna M Donnelly
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Sam Ngu
- Department of Hematology and Oncology, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Morana Vojnic
- Department of Hematology and Oncology, Lenox Hill Hospital, New York, NY, 10075, USA
| | | | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, 10075, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
4
|
Mohamadkazem M, Neshastehriz A, Amini SM, Moshiri A, Janzadeh A. Radiosensitising effect of iron oxide-gold nanocomplex for electron beam therapy of melanoma in vivo by magnetic targeting. IET Nanobiotechnol 2023; 17:212-223. [PMID: 37083267 DOI: 10.1049/nbt2.12129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Melanoma is a dangerous type of skin cancer sometimes treated with radiotherapy. However, it induces damage to the surrounding healthy tissue and possibly further away areas. Therefore, it is necessary to give a lower dose to the patient with targeted therapy. In this study, the radio-sensitising effect of gold-coated iron oxide nanoparticles on electron beam radiotherapy of a melanoma tumour with magnetic targeting in a mouse model was investigated. Gold-coated iron oxide nanoparticles were prepared in a steady procedure. The melanoma tumour model was induced in mice. Animals were divided into five groups: (1) normal; (2) melanoma; (3) gold-coated iron oxide nanoparticles alone; (4) electron beam radiotherapy; (5) electron beam radiotherapy plus gold-coated iron oxide nanoparticles. The magnet was placed on the tumour site for 2 h. The tumours were then exposed to 6 MeV electron beam radiotherapy for a dose of 8 Gy. Inductively coupled plasma optical emission spectrometry test, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay blood test were also performed. Gold-coated iron oxide nanoparticles with magnetic targeting before electron beam radiotherapy reduced the growth of the tumour compared to the control group. Blood tests did not show any significant toxicity. Deposition of nanoparticles was more in the tumour and spleen tissue and to a lesser extent in the liver, kidney, and lung tissues. The synergistic effect of nanoparticles administered by the intraperitoneal route and then concentrated into the tumour area by application of an external permanent magnet, before delivery of the electron beam radiotherapy improved the overall cancer treatment outcome and prevented metal distribution side effects.
Collapse
Affiliation(s)
- Mahshad Mohamadkazem
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
- Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
- Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Ali Moshiri
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Internò V, Sergi MC, Metta ME, Guida M, Trerotoli P, Strippoli S, Circelli S, Porta C, Tucci M. Melanoma Brain Metastases: A Retrospective Analysis of Prognostic Factors and Efficacy of Multimodal Therapies. Cancers (Basel) 2023; 15:1542. [PMID: 36900333 PMCID: PMC10001111 DOI: 10.3390/cancers15051542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Brain metastasis in cutaneous melanoma (CM) has historically been considered to be a dismal prognostic feature, although recent evidence has highlighted the intracranial activity of combined immunotherapy (IT). Herein, we completed a retrospective study to investigate the impact of clinical-pathological features and multimodal therapies on the overall survival (OS) of CM patients with brain metastases. A total of 105 patients were evaluated. Nearly half of the patients developed neurological symptoms leading to a negative prognosis (p = 0.0374). Both symptomatic and asymptomatic patients benefited from encephalic radiotherapy (eRT) (p = 0.0234 and p = 0.011). Lactate dehydrogenase (LDH) levels two times higher than the upper limit normal (ULN) at the time of brain metastasis onset was associated with poor prognosis (p = 0.0452) and identified those patients who did not benefit from eRT. Additionally, the poor prognostic role of LDH levels was confirmed in patients treated with targeted therapy (TT) (p = 0.0015) concerning those who received immunotherapy (IT) (p = 0.16). Based on these results, LDH levels higher than two times the ULN at the time of the encephalic progression identify those patients with a poor prognosis who did not benefit from eRT. The negative prognostic role of LDH levels on eRT observed in our study will require prospective evaluations.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Maria Elvira Metta
- Medical Statistic and Biometry Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Michele Guida
- IRCCS, Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Paolo Trerotoli
- Medical Statistic and Biometry Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | | | - Salvatore Circelli
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Policlinico di Bari, 70124 Bari, Italy
| |
Collapse
|
6
|
Blethen KE, Sprowls SA, Arsiwala TA, Wolford CP, Panchal DM, Fladeland RA, Glass MJ, Dykstra LP, Kielkowski BN, Blackburn JR, Andrick CJ, Lockman PR. Effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models. Radiat Oncol 2023; 18:22. [PMID: 36732754 PMCID: PMC9896731 DOI: 10.1186/s13014-023-02215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Approximately 20% of all cancer patients will develop brain metastases in their lifespan. The standard of care for patients with multiple brain metastases is whole-brain radiation therapy, which disrupts the blood-brain barrier. Previous studies have shown inflammatory mediators play a role in the radiation-mediated increase in permeability. Our goal was to determine if differential permeability post-radiation occurs between immunocompetent and immunocompromised mice. METHODS We utilized a commissioned preclinical irradiator to irradiate brains of C57Bl/6J wild-type and athymic nude mice. Acute (3-24 h) effects on blood-brain barrier integrity were evaluated with our in-situ brain perfusion technique and quantitative fluorescent and phosphorescent microscopy. The presence of inflammatory mediators in the brain and serum was determined with a proinflammatory cytokine panel. RESULTS Blood-brain barrier integrity and efflux transporter activity were altered in the immunocompetent mice 12 h following irradiation without similar observations in the immunocompromised mice. We observed increased TNF-α concentrations in the serum of wild-type mice immediately post-radiation and nude mice 12 h post-radiation. The brain concentration of CXCL1 was also increased in both mouse strains at the 12-h time point. CONCLUSIONS The immune response plays a role in the magnitude of blood-brain barrier disruption following irradiation in a time- and size-dependent manner.
Collapse
Affiliation(s)
- K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - S A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C P Wolford
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - D M Panchal
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA
| | - R A Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - M J Glass
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - L P Dykstra
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - B N Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - J R Blackburn
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C J Andrick
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
7
|
Seravalli E, Sierts M, Brand E, Maspero M, David S, Philippens MEP, Voormolen EHJ, Verhoeff JJC. Dosimetric feasibility of direct post-operative MR-Linac-based stereotactic radiosurgery for resection cavities of brain metastases. Radiother Oncol 2023; 179:109456. [PMID: 36592740 DOI: 10.1016/j.radonc.2022.109456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Post-operative radiosurgery (SRS) of brain metastases patients is typically planned on a post-recovery MRI, 2-4 weeks after resection. However, the intracranial metastasis may (re-)grow in this period. Planning SRS directly on the post-operative MRI enables shortening this time interval, anticipating the start of adjuvant systemic therapy, and so decreasing the chance of extracranial progression. The MRI-Linac (MRL) allows the simultaneous execution of the post-operative MRI and SRS treatment. The aim of this work was investigating the dosimetric feasibility of MRL-based post-operative SRS. METHODS MRL treatments based on the direct post-operative MRI were simulated, including thirteen patients with resectable single brain metastases. The gross tumor volume (GTV) was contoured on the direct post-operative scans and compared to the post-recovery MRI GTV. Three plans for each patient were created: a non-coplanar VMAT CT-Linac plan (ncVMAT) and a coplanar IMRT MRL plan (cIMRT) on the direct post-operative MRI, and a ncVMAT plan on the post-recovery MRI as the current clinical standard. RESULTS Between the direct post-operative and post-recovery MRI, 15.5 % of the cavities shrunk by > 2 cc, and 46 % expanded by ≥ 2 cc. Although the direct post-operative cIMRT plans had a higher median gradient index (3.6 vs 2.7) and median V3Gy of the skin (18.4 vs 1.1 cc) compared to ncVMAT plans, they were clinically acceptable. CONCLUSION Direct post-operative MRL-based SRS for resection cavities of brain metastases is dosimetrically acceptable, with the advantages of increased patient comfort and logistics. Clinical benefit of this workflow should be investigated given the dosimetric plausibility.
Collapse
Affiliation(s)
- Enrica Seravalli
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands.
| | - Michelle Sierts
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands
| | - Eric Brand
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands
| | - Matteo Maspero
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands
| | - Szabolcs David
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands
| | | | | | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Centre Utrecht, the Netherlands
| |
Collapse
|
8
|
Guerini AE, Nici S, Magrini SM, Riga S, Toraci C, Pegurri L, Facheris G, Cozzaglio C, Farina D, Liserre R, Gasparotti R, Ravanelli M, Rondi P, Spiazzi L, Buglione M. Adoption of Hybrid MRI-Linac Systems for the Treatment of Brain Tumors: A Systematic Review of the Current Literature Regarding Clinical and Technical Features. Technol Cancer Res Treat 2023; 22:15330338231199286. [PMID: 37774771 PMCID: PMC10542234 DOI: 10.1177/15330338231199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristian Toraci
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Cozzaglio
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-last author
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-last author
| |
Collapse
|
9
|
Lamba N, Ott PA, Iorgulescu JB. Use of First-Line Immune Checkpoint Inhibitors and Association With Overall Survival Among Patients With Metastatic Melanoma in the Anti-PD-1 Era. JAMA Netw Open 2022; 5:e2225459. [PMID: 36006646 PMCID: PMC9412220 DOI: 10.1001/jamanetworkopen.2022.25459] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IMPORTANCE In 2015, first-line programmed cell death 1 (PD-1) immune checkpoint inhibitors (ICI) were Food and Drug Administration (FDA)-approved and National Comprehensive Cancer Network (NCCN)-recommended for patients with stage IV melanoma. Few studies have assessed the overall survival (OS) and usage rate associated with first-line ICI following 2015. OBJECTIVE To determine the rates of ICI use for metastatic melanoma following FDA approval in 2015 and characterize OS associated with first-line ICI use in this patient population. DESIGN, SETTING, AND PARTICIPANTS In this retrospective, nationwide cohort study, adult patients (≥20 years of age) with newly diagnosed stage IV cutaneous melanoma from 2010 to 2019 were identified using the US National Cancer Database (NCDB). Data were released by NCDB in March 2022 and analyzed in June 2022. INTERVENTIONS Patients were compared based on first-line ICI receipt vs not. MAIN OUTCOMES AND MEASURES The OS and use of first-line ICI in 2016 to 2019 were assessed using multivariable Cox and logistic regression, respectively. To account for immortal time bias in receiving ICI, landmark time points were used (the 50th and 75th percentile times from diagnosis to ICI initiation). RESULTS Among 16 831 patients with stage IV melanoma, 11 435 (67.9%) of patients were male; 116 (0.69%) were Asian or Pacific Islander, 475 (2.82%) were Hispanic, 270 (1.60%) were non-Hispanic Black, 15 711 (93.55%) were non-Hispanic White, and 145 (0.86%) were other race and ethnicity; the median (IQR) age at diagnosis was 64 (54-73) years. First-line immunotherapy use increased from 8.9% (127 of 1429) in 2010 to 38.8% (685 of 1766) in 2015, and 62.5% (1223 of 1958) in 2019. Median OS improved from 7.7 months (95% CI, 7.1-8.6 months) in 2010 to 17.5 months (95% CI, 14.9-19.8 months) in 2018. For patients diagnosed in 2016 or later, OS improved with first-line ICI (median OS using the 78-day landmark: 43.7 months [95% CI, 38.1-49.1 months] vs 16.1 months [95% CI, 13.5-19.3 months] for targeted therapy or chemotherapy; adjusted P < .001)-even after adjusting for patient, disease, and treatment factors. Results were similar for the 48-day landmark. This included patients presenting with brain metastases (first-line ICI median OS using the 78-day landmark: 19.9 months [95% CI, 17.2-25.0 months] vs 10.7 months for targeted therapy [95% CI, 9.5-12.3 months], adjusted P = .001). First-line ICI use varied by patients' age, insurance status, zip code-level household income, and treating hospital type. CONCLUSIONS AND RELEVANCE Following anti-PD-1 approval in 2015, first-line ICI was associated with substantial OS improvements for patients with stage IV melanoma, including those with brain metastases. As of 2019, 38% of patients still were not receiving first-line ICI in the US, with use varying by patients' socioeconomic factors.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Boston, Massachusetts
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Melanoma Brain Metastases: An Update on the Use of Immune Checkpoint Inhibitors and Molecularly Targeted Agents. Am J Clin Dermatol 2022; 23:523-545. [PMID: 35534670 DOI: 10.1007/s40257-022-00678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/01/2022]
Abstract
Brain metastases from melanoma are no longer uniformly associated with dismal outcomes. Impressive tumor tissue-based (craniotomy) translational research has consistently shown that distinct patient subgroups may have a favorable prognosis. This review provides a historical overview of the standard-of-care treatments until the early 2010s. It subsequently summarizes more recent advances in understanding the biology of melanoma brain metastases (MBMs) and treating patients with MBMs, mainly focusing upon prospective clinical trials of BRAF/MEK and PD-1/CTLA-4 inhibitors in patients with previously untreated MBMs. These additional systemic treatments have provided effective complementary treatment approaches and/or alternatives to radiation and craniotomy. The current role of radiation therapy, especially in conjunction with systemic therapies, is also discussed through the lens of various retrospective studies. The combined efficacy of systemic treatments with radiation has improved overall survival over the last 10 years and has sparked considerable research interest regarding optimal dosing and sequencing of radiation treatments with systemic treatments. Finally, the review describes ongoing clinical trials in patients with MBMs.
Collapse
|
11
|
Rubino S, Oliver DE, Tran ND, Vogelbaum MA, Forsyth PA, Yu HHM, Ahmed K, Etame AB. Improving Brain Metastases Outcomes Through Therapeutic Synergy Between Stereotactic Radiosurgery and Targeted Cancer Therapies. Front Oncol 2022; 12:854402. [PMID: 35311078 PMCID: PMC8924127 DOI: 10.3389/fonc.2022.854402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common form of brain cancer. Increasing knowledge of primary tumor biology, actionable molecular targets and continued improvements in systemic and radiotherapy regimens have helped improve survival but necessitate multidisciplinary collaboration between neurosurgical, medical and radiation oncologists. In this review, we will discuss the advances of targeted therapies to date and discuss findings of studies investigating the synergy between these therapies and stereotactic radiosurgery for non-small cell lung cancer, breast cancer, melanoma, and renal cell carcinoma brain metastases.
Collapse
Affiliation(s)
- Sebastian Rubino
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Daniel E. Oliver
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Nam D. Tran
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Peter A. Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Kamran Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Arnold B. Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|