1
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Effect of Hesperetin on the Antidepressant Activity of Electroconvulsive Therapy in an Enforced Reserpine Model of Depression in Male Rats. IRANIAN JOURNAL OF PSYCHIATRY AND BEHAVIORAL SCIENCES 2022. [DOI: 10.5812/ijpbs-122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Depression is a common and debilitating disorder of the brain. Many pharmacological therapies, including many plant components (such as flavonoids), are used to treat depression. Electroconvulsive therapy (ECT) is a useful method for depressed patients who do not respond to medication. However, this method has some side effects. Hence, investigators have tried to improve ECT’s positive points by diminishing its side effects. Objectives: We investigated the effect of hesperetin (a flavonoid component) on the antidepressant activity of ECT in an enforced reserpine model of depression in male rats. Methods: Eighty male rats (230 - 250 g) were randomly divided into control, ECT + reserpine (Res), Res + hesperetin (Hes; 10 or 20 mg/kg), Res + ECT, and Res + ECT + Hes (10 or 20 mg/kg) groups. The effects of hesperetin were evaluated by the forced swimming test (FST), sucrose preference test (SPT), open field test (OFT), elevated plus maze test (EPMT), as well as by measurement of the brain-derived neurotrophic factor (BDNF) and oxidative stress biomarkers [ie, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH)] in the prefrontal cortex area. Results: The outcomes of the behavioral experiments showed that Hes + ECT treatment could raise the percentage of open arm entrance in EPMT, anhedonia in SPT, and decrease immobilization time in FST compared to the groups treated with ECT (P < 0.05) or hesperetin alone. Our biochemical research also illustrated a significant reduction in MDA in the groups treated with ECT + Hes (10 or 20 mg/kg; P < 0.01 and P < 0.001) and ECT or hesperetin, as well as a significant increase in GSH, SOD, and BDNF in the ECT + Hes (20 mg/kg) animal group (P < 0.001). Conclusions: In depressed rats, the ECT linked to the application of hesperetin could significantly elevate BDNF, GSH, and SOD reduction in depressed male rats.
Collapse
|
3
|
Maffioletti E, Carvalho Silva R, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci 2021; 11:brainsci11091120. [PMID: 34573142 PMCID: PMC8471796 DOI: 10.3390/brainsci11091120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) represents an effective intervention for treatment-resistant depression (TRD). One priority of this research field is the clarification of ECT response mechanisms and the identification of biomarkers predicting its outcomes. We propose an overview of the molecular studies on ECT, concerning its course and outcome prediction, including also animal studies on electroconvulsive seizures (ECS), an experimental analogue of ECT. Most of these investigations underlie biological systems related to major depressive disorder (MDD), such as the neurotrophic and inflammatory/immune ones, indicating effects of ECT on these processes. Studies about neurotrophins, like the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), have shown evidence concerning ECT neurotrophic effects. The inflammatory/immune system has also been studied, suggesting an acute stress reaction following an ECT session. However, at the end of the treatment, ECT produces a reduction in inflammatory-associated biomarkers such as cortisol, TNF-alpha and interleukin 6. Other biological systems, including the monoaminergic and the endocrine, have been sparsely investigated. Despite some promising results, limitations exist. Most of the studies are concentrated on one or few markers and many studies are relatively old, with small sample sizes and methodological biases. Expression studies on gene transcripts and microRNAs are rare and genetic studies are sparse. To date, no conclusive evidence regarding ECT molecular markers has been reached; however, the future may be just around the corner.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | | | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany;
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717255; Fax: +39-030-3701157
| |
Collapse
|
4
|
Alizadeh Makvandi A, Khalili M, Roghani M, Amiri Moghaddam S. Hesperetin ameliorates electroconvulsive therapy-induced memory impairment through regulation of hippocampal BDNF and oxidative stress in a rat model of depression. J Chem Neuroanat 2021; 117:102001. [PMID: 34246766 DOI: 10.1016/j.jchemneu.2021.102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Depression is one of the most common mental health disorders and it is generally characterized by negative mood. Although electroconvulsive therapy (ECT) is an effective treatment for depression, however, it can cause cognitive deficit. Hesperetin, an active ingredient in citrus peels, has antioxidant and neuroprotective properties. In this study, we evaluated the effect of hesperetin on memory impairment induced by ECT in a reserpine-induced depression model in male rat. For this purpose, 105 male rats weighing 230-250 g were randomly divided into control and reserpine-treated groups. The reserpine-treated animals were subdivided into: Reserpine, Hesperetin (10 and 20 mg/kg), ECT and ECT+Hesperetin (10 and 20 mg/kg). After taking the drugs, the effect of hesperetin was evaluated through behavioral NORT, Y Maze, FST, SPT and also via assessment of hippocampal brain-derived neurotrophic factor (BDNF) and oxidative stress biomarkers i.e., MDA, SOD and GSH. As a result, our biochemical studies showed a significant decrease of MDA in groups treated with ECT+Hesperetin as compared to ECT and hesperetin groups (P < 0.001) and a marked increase in SOD, GSH and BDNF in ECT+Hesperetin 20 group as compared to other groups (p < 0.05). Also, the results of behavioral tests revealed that treatment with hesperetin can increase the novel object recognition index and alternation behaviors in Y maze test as compared to the groups treated with hesperetin or ECT (p < 0.05). These results suggest that co-administration of hesperetin with ECT is effective for improvement of cognitive function and can alleviate ECT-induced memory impairment in reserpine-treated rats.
Collapse
Affiliation(s)
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Sara Amiri Moghaddam
- Department of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Gonçalves CL, Abelaira HM, Rosa T, de Moura AB, Veron DC, Borba LA, Botelho MEM, Goldim MP, Garbossa L, Fileti ME, Petronilho F, Ignácio ZM, Quevedo J, Réus GZ. Ketamine treatment protects against oxidative damage and the immunological response induced by electroconvulsive therapy. Pharmacol Rep 2021; 73:525-535. [PMID: 33393059 DOI: 10.1007/s43440-020-00200-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is often recommended for major depressive disorder (MDD) for those who do not respond to the first and second antidepressant trials. A combination of two therapies could improve antidepressant efficacy. Thus, this study aimed to investigate the synergistic effects of ECT combined to antidepressants with a different mechanism of action. METHODS Rats were treated once a day, for five days with ketamine (5 mg/kg), fluoxetine (1 mg/kg), and bupropion (4 mg/kg) alone or in combination with ECT (1 mA; 100 V). After, oxidative damage and antioxidant capacity were assessed in the prefrontal cortex (PFC) and hippocampus, and pro-inflammatory cytokines levels were evaluated in the serum. RESULTS ECT alone increased lipid peroxidation in the PFC and hippocampus. In the PFC of rats treated with ECT in combination with fluoxetine and bupropion, and in the hippocampus of rats treated with ECT combined with ketamine and bupropion there was a reduction in the lipid peroxidation. The nitrite/nitrate was increased by ECT alone but reverted by combination with ketamine in the hippocampus. Superoxide dismutase (SOD) was increased by ECT and maintained by fluoxetine and bupropion in the PFC. ECT alone increased interleukin-1β (IL-1β) and the administration of ketamine was able to revert this increase showing a neuroprotective effect of this drug when in combination with ECT. CONCLUSION The treatment with ECT leads to an increase in oxidative damage and alters the immunological system. The combination with ketamine was able to protect against oxidative damage and the immunological response induced by ECT.
Collapse
Affiliation(s)
- Cinara Ludvig Gonçalves
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Helena Mendes Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Thayse Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Airam Barbosa de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Deise Cristina Veron
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Laura Araújo Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Maria Eduarda Mendes Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Mariana Pereira Goldim
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Zuleide Maria Ignácio
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.,Laboratory of Physiology, Pharmacology and Psychopathology, Campus Chapecó, Federal University of South Frontier (UFFS), Chapecó, Santa Catarina, Brazil.,State Secretary for Justice and Citizenship of Santa Catarina, Chapecó, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.,Department of Psychiatry and Behavioral Sciences, Center of Excellence On Mood Disorders, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center At Houston (UTHealth), Houston, TX, USA
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
6
|
An X, Shi X. Effects of electroconvulsive shock on neuro-immune responses: Does neuro-damage occur? Psychiatry Res 2020; 292:113289. [PMID: 32702550 DOI: 10.1016/j.psychres.2020.113289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, this treatment may produce memory impairment. The mechanisms of the cognitive adverse effects are not known. Neuroimmune response is related to the cognitive deficits. By reviewing the available animal literature, we examined the glia activation, inflammatory cytokines, neuron oxidative stress responses, and neural morphological changes following electroconvulsive shock (ECS) treatment. The studies showed that ECS activates microglia, upregulates neuro-inflammatory cytokines, and increases oxidative stress responses. But these effects are rapid and may be transient. They normalize as ECS treatment continues, suggesting endogenous neuroprotection may be mobilized. The transient changes are well in line with the clinical observations that ECT usually does not cause significant long-lasting retrograde amnesia. The longitudinal studies will be particularly important to explore the dynamic changes of neuroplasticity following ECT (Jonckheere et al., 2018). Investigating the neuroplasticity changes in animals that suffered chronic stress may also be crucial to giving support to the translation of preclinical research.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Xiujian Shi
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
7
|
Markers of HPA-axis activity and nucleic acid damage from oxidation after electroconvulsive stimulations in rats. Acta Neuropsychiatr 2019; 31:287-293. [PMID: 30854991 DOI: 10.1017/neu.2019.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Oxidative stress has been suggested to increase after electroconvulsive therapy (ECT), a treatment which continues to be the most effective for severe depression. Oxidative stress could potentially be mechanistically involved in both the therapeutic effects and side effects of ECT. METHODS We measured sensitive markers of systemic and central nervous system (CNS) oxidative stress on DNA and RNA (urinary 8-oxodG/8-oxoGuo, cerebrospinal fluid 8-oxoGuo, and brain oxoguanine glycosylase mRNA expression) in male rats subjected to electroconvulsive stimulations (ECS), an animal model of ECT. Due to the previous observations that link hypothalamic-pituitary-adrenal (HPA)-axis activity and age to DNA/RNA damage from oxidation, groups of young and middle-aged male animals were included, and markers of HPA-axis activity were measured. RESULTS ECS induced weight loss, increased corticosterone (only in middle-aged animals), and decreased cerebral glucocorticoid receptor mRNA expression, while largely leaving the markers of systemic and CNS DNA/RNA damage from oxidation unaltered. CONCLUSION These results suggest that ECS is not associated with any lasting effects on oxidative stress on nucleic acids neither in young nor middle-aged rats.
Collapse
|
8
|
Şenyurt M, Aybek H, Herken H, Kaptanoglu B, Korkmaz A. Evaluation of Oxidative Status in Patients Treated with Electroconvulsive Therapy. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:40-46. [PMID: 28138109 PMCID: PMC5290719 DOI: 10.9758/cpn.2017.15.1.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/17/2023]
Abstract
Objective Electroconvulsive therapy (ECT) is used in the treatment of many psychiatric diseases and this therapy may be effective on antioxidant defence system. In this study, we aimed to evaluate the effects of ECT on oxidative stress. Methods Fourteen major depression, 11 schizophrenia and 8 bipolar affective disorder patients diagnosed and received ECT treatment, and 37 healthy volunteers enrolled in the study. ECT was applied to all patients. Before ECT, after the first and last ECTs, serum samples were obtained. Serum total antioxidant status (TAS), total oxidant status (TOS), and calculated oxidative stress index (OSI) were measured in patients before and after ECTs. Results TOS values before ECT were higher in major depression (p=0.005) and schizophrenia (p=0.001) groups compared to the control group. TAS values were lower in major depression (p=0.0001), schizophrenia (p=0.004), bipolar affective disorder (p=0.004) groups compared to the controls. Also OSI values were higher in major depression (p=0.0001), schizophrenia (p=0.001), bipolar affective disorder (p=0.009) groups compared to healthy group. After the last ECT, TOS values were significantly lower compared to TOS values before ECT in major depression (p=0.004) and schizophrenia patients (p=0.004). TAS values after the first ECT were higher compared to values before ECT in major depression patients (p=0.004). After last ECT, OSI values were significantly lower compared to before ECT in schizophrenia patients (p=0.006). Conclusion As a result, it can be said that ECT did not increase oxidative stress. However, further studies with more patients are needed.
Collapse
Affiliation(s)
- Mahmut Şenyurt
- Department of Biochemistry, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Hulya Aybek
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hasan Herken
- Department of Psychiatry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Bunyamin Kaptanoglu
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ali Korkmaz
- Department of Child and Adolescent Psychiatry, Sivas Numune Hospital, Sivas, Turkey
| |
Collapse
|
9
|
Jorgensen A, Krogh J, Miskowiak K, Bolwig TG, Kessing LV, Fink-Jensen A, Nordentoft M, Henriksen T, Weimann A, Poulsen HE, Jorgensen MB. Systemic oxidatively generated DNA/RNA damage in clinical depression: associations to symptom severity and response to electroconvulsive therapy. J Affect Disord 2013; 149:355-62. [PMID: 23497793 DOI: 10.1016/j.jad.2013.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Depression has been associated with increased oxidative stress and hypothesized to accelerate aging. Nucleic acid damage from oxidation is a critical part of the aging process, and a suggested early event in age-related somatic morbidities that are also prevalent in depression, such as dementia and type 2 diabetes. We hypothesized that increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage, and that this increase is attenuated by an effective antidepressant treatment. METHODS The urinary excretion of markers of systemic oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy (ECT) (N=29). In the severely depressed patient group, samples were also obtained 1 week after the completion of ECT. RESULTS Systemic RNA damage from oxidation, as measured by 8-oxoGuo excretion, was higher with increasing severity of depression (controls<moderately depressed<severely depressed) (P for trend=0.004). The 8-oxoGuo excretion was further increased after clinically effective ECT compared with pre-ECT values (P=0.006). There were no differences in 8-oxodG excretion between the groups or pre- vs. post-ECT. LIMITATIONS Small sample size and the inclusion of both unipolar and bipolar patients in the severely depressed group. CONCLUSIONS Severe depression is associated with increased systemic oxidatively generated RNA damage, which may be an additional factor underlying the somatic morbidity and neurodegenerative features associated with depression. Due to the lack of normalization by clinically effective ECT, the phenomenon does not appear to be causally linked to the depressive state per se.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Centre Copenhagen, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Réus GZ, Stringari RB, Rezin GT, Pezente DP, Scaini G, Maggi DD, De-Nês BT, Streck EL, Quevedo J, Feier G. Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain. Acta Neuropsychiatr 2012; 24:275-85. [PMID: 25286992 DOI: 10.1111/j.1601-5215.2011.00629.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Réus GZ, Stringari RB, Rezin GT, Pezente DP, Scaini G, Maggi DD, De-Nês BT, Streck EL, Quevedo J, Feier G. Effects of maintenance electroshock on mitochondrial respiratory chain and creatine kinase activities in the rat brain.Objective:Electroconvulsive therapy is used efficacious treatment for a variety of complicated psychiatric disorders and evidences have indicated that energy metabolism impairment may be involved in pathophysiology and treatment of mood disorders. This work was performed to determine creatine kinase and mitochondrial respiratory chain activities at different times after the maintenance electroconvulsive shock (ECS).Methods:Male Wistar rats received a protocol mimicking therapeutic of maintenance or simulated ECS (sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance ECS. We measured creatine kinase and mitochondrial respiratory chain activities in the prefrontal cortex, hippocampus, cortex, cerebellum and striatum.Results:Our results showed that maintenance ECS alter respiratory chain complexes and creatine kinase activities in the rat brain, but these effects were related to brain area and time after the ECS, in which the animal were killed.Conclusion:Finally, these findings further support the hypothesis that alteration on the energy metabolism could be involved in the therapeutic or adverse effects of ECS.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roberto B Stringari
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Daiana P Pezente
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora D Maggi
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna T De-Nês
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Feier
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
11
|
Analgesic, anticonvulsant and antioxidant activities of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride in mice. Pharmacol Biochem Behav 2011; 101:138-47. [PMID: 22227221 DOI: 10.1016/j.pbb.2011.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Recently we have shown that 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride (LPP1) is an antinociceptive and local anesthetic agent in rodents. Below an extended study of the pharmacological activity of LPP1 is described. In vitro LPP1 has no affinity for GABA(A), opioidergic μ and serotonergic 5-HT(1A) receptors. The total antioxidant capacity of LPP1 (1-10mM) measured as ABTS radical cation-scavenging activity showed that LPP1 has dose-dependent antioxidant properties in vitro. Low plasma concentration of this compound detected by means of HPLC method 30min after its intraperitoneal administration suggests a rapid conversion to metabolite(s) which may be responsible for its analgesic and anticonvulsant activities in vivo. In vivo the compound's influence on the electroconvulsive threshold and its activity in the maximal electroshock seizure test (MES) were evaluated. The results demonstrated that LPP1 had an anticonvulsant activity in the MES model (ED(50)=112mg/kg) and at a dose of 50mg/kg was able to elevate the electroconvulsive threshold for 8mA as compared to the vehicle-treated mice. The analgesic activity of LPP1 was investigated in the acetic acid-induced writhing test in two groups of mice: animals with sensory C-fibers ablated, and mice with C-fibers unimpaired. It proved the potent activity of this compound in both groups (approximately 85% as compared to the vehicle-treated mice). The adverse effects of LPP1 were evaluated as acute toxicity (LD(50)=747.8mg/kg) and motor coordination impairments in the rotarod and chimney tests. The results from these tests show that LPP1 at doses higher than 100mg/kg is likely to impair the motor performance of experimental animals. Concluding, LPP1 is an analgesic and anticonvulsant compound which has antioxidant properties in vitro. Further studies are necessary to assess whether the antioxidant activity and the receptor profiling demonstrated in vitro can be confirmed for its metabolite(s) that are formed in vivo.
Collapse
|
12
|
Kartalci S, Karabulut AB, Ozcan AC, Porgali E, Unal S. Acute and chronic effects of electroconvulsive treatment on oxidative parameters in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1689-94. [PMID: 21620920 DOI: 10.1016/j.pnpbp.2011.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 02/04/2023]
Abstract
Electroconvulsive therapy (ECT) is an effective treatment alternative for schizophrenia. Previous studies have already indicated the possible effects of oxidative stress in this disorder. However, there have been no previous studies evaluating the effects of ECT on the oxidative stress in these patients. We therefore aimed to investigate the acute and chronic effects of ECT on serum levels of oxidant and antioxidant molecules in schizophrenia patients (n=28). The serum MDA and CAT levels of the patients with schizophrenia were higher than that of the controls before ECT (n=20) but there was no significant difference in the serum NO and GSH levels of the patient groups compared to the controls. We found that the NO levels of the patients were higher than the controls in the group experiencing their first episode but not in the chronic group. There was a significant clinical improvement in the patients in terms of BPRS, SANS and SAPS reduction after the 9th ECT, but not the 1st ECT. Serum MDA levels were significantly reduced compared to the baseline after the 9th ECT session although there was no significant difference after the 1st session. Separate evaluation of the patient groups revealed that the significant MDA decrease following ECT was in the patients experiencing their first episode and not in the chronic group. No significant difference was noted in the serum levels of other oxidant and antioxidant molecules after either the 1st or 9th ECT session. These results suggest that ECT does not produce any negative effect on oxidative stress in patients with schizophrenia.
Collapse
Affiliation(s)
- Sukru Kartalci
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey.
| | | | | | | | | |
Collapse
|
13
|
Petronilho F, Feier G, de Souza B, Guglielmi C, Constantino LS, Walz R, Quevedo J, Dal-Pizzol F. Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res 2009; 164:316-20. [PMID: 19691993 DOI: 10.1016/j.jss.2009.04.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/05/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mechanisms of brain damage and neuroplasticity following traumatic brain injury (TBI) are complex and not completely understood. Thus, we investigated markers of oxidative stress in the central nervous system after mild and severe TBI in rats. MATERIAL AND METHODS Adult male wistar rats (five animals per group) submitted to mild (mTBI group) or severe TBI (sTBI Group) were sacrificed 30 min, 3, 6, or 12 h after the injury to quantify markers of oxidative damage in different brain regions. Levels of thiobarbituric acid reactive species and protein carbonyl in the cortex, hippocampus, striatum, and cerebellum of mTBI and sTBI groups were compared with the control group. RESULTS After mTBI, levels of protein oxidation were increased in all analyzed structures in several different times after injury. The increase in TBARS levels was not so consistent in mTBI. In contrast, sTBI did not induce a sustainable increase in oxidative damage markers in all analyzed structures. CONCLUSIONS Oxidative damage seemed to be inversely proportional to severity of traumatic brain injury.
Collapse
Affiliation(s)
- Fabricia Petronilho
- Laboratorio de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zupan G, Pilipović K, Hrelja A, Peternel S. Oxidative stress parameters in different rat brain structures after electroconvulsive shock-induced seizures. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:771-7. [PMID: 18201811 DOI: 10.1016/j.pnpbp.2007.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/23/2007] [Accepted: 12/09/2007] [Indexed: 12/31/2022]
Abstract
Electroconvulsive therapy has been used in the treatment of psychiatric disorders since the 1930s, but little progress has been made in understanding the cellular mechanisms underlying its therapeutic and adverse effects. Electroconvulsive shock (ECS) in animals provides a common experimental model for studying the effects of electroconvulsive therapy in humans. In order to examine the changes of the brain oxidative stress parameters in several brain structures in the early time period after ECS-induced seizures, the levels of lipid peroxidation as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the rat hippocampus, cerebellum, frontal cortex and the pons/medulla region were determined at different time points during the first 24 h after single ECS-induced seizures. In the hippocampus and cerebellum the levels of lipid peroxidation were unchanged, while the SOD and GSH-Px activities were significantly increased. Levels of lipid peroxidation and the activities of SOD and GSH-Px were not statistically changed in the pons/medulla region. Levels of lipid peroxidation in the frontal cortex were significantly higher in comparison to the control group at all time points examined while the SOD and GSH-Px activities were not statistically changed. In conclusion, the results of the present study indicate that single ECS causes the rat brain structure-specific alterations in the levels of lipid peroxidation as well as in the SOD and GSH-Px activities at different time points within the first 24 h after the seizures induction. Oxidative lipid damage was evident only in the frontal cortex, while the hippocampus, cerebellum and the pons/medulla region remained oxidatively unaffected in our experimental conditions.
Collapse
Affiliation(s)
- Gordana Zupan
- Department of Pharmacology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000 Rijeka, Croatia.
| | | | | | | |
Collapse
|
15
|
Jornada LK, Feier G, Barichello T, Vitali AM, Reinke A, Gavioli EC, Dal-Pizzol F, Quevedo J. Effects of maintenance electroshock on the oxidative damage parameters in the rat brain. Neurochem Res 2007; 32:389-94. [PMID: 17268857 DOI: 10.1007/s11064-006-9214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 10/30/2006] [Indexed: 01/11/2023]
Abstract
Although several advances have occurred over the past 20 years concerning refining the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding the mechanisms underlying its therapeutic or adverse effects. This work was performed in order to determine the level of oxidative damage at different times after the maintenance electroconvulsive shock (ECS). Male Wistar rats (250-300 g) received a protocol mimicking therapeutic of maintenance or simulated ECS (Sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance electroconvulsive shock. We measured oxidative damage parameters (thiobarbituric acid reactive species for lipid peroxidation and protein carbonyls for protein damage, respectively) in hippocampus, cortex, cerebellum and striatum. We demonstrated no alteration in the lipid peroxidation and protein damage in the four structures studied immediately after, 48 h and 7 days after a last maintenance electroconvulsive shock. Our findings, for the first time, demonstrated that after ECS maintenance we did protocol minimal oxidative damage in the brain regions, predominating absence of damage on the findings.
Collapse
Affiliation(s)
- Luciano K Jornada
- Laboratorio de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciuma, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hwang IK, Yoo KY, Kim DW, Choi JH, Lee IS, Won MH. Hyperoxidized Peroxiredoxins and Glyceraldehyde-3-Phosphate Dehydrogenase Immunoreactivity and Protein Levels are Changed in the Gerbil Hippocampal CA1 Region After Transient Forebrain Ischemia. Neurochem Res 2007; 32:1530-8. [PMID: 17457673 DOI: 10.1007/s11064-007-9345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress is a major pathogenic event occurring in several brain disorders and is a major cause of brain damage due to ischemia/reperfusion. Thiol proteins are easily oxidized in cells exposed to reactive oxygen species (ROS). In the present study, we investigated transient ischemia-induced chronological changes in hyperoxidized peroxiredoxins (Prx-SO3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH-SO3) immunoreactivity and protein levels in the gerbil hippocampus induced by 5 min of transient forebrain ischemia. Weak Prx-SO3 immunoreactivity is detected in the hippocampal CA1 region of the sham-operated group. Prx-SO3 immunoreactivity was significantly increased 12 h and 1 day after ischemia/reperfusion, and the immunoreactivity was decreased to the level of the sham-operated group 2 days after ischemia/reperfusion. Prx-SO3 immunoreactivity in the 4 days post-ischemia group was increased again, and the immunoreactivity was expressed in glial components for 5 days after ischemia/reperfusion. GAPDH-SO3 immunoreactivity was highest in the CA1 region 1 day after ischemia/reperfusion, the immunoreactivity was decreased 2 days after ischemia/reperfusion. Four days after ischemia/reperfusion, GAPDH-SO3 immunoreactivity increased again, and the immunoreactivity began to be expressed in glial components from 5 days after ischemia/reperfusion. Prx-SO3 and GAPDH-SO3 protein levels in the ischemic CA1 region were also very high 12 h and 1 day after ischemia/reperfusion and returned to the level of the sham-operated group 3 days after ischemia/reperfusion. Their protein levels were increased again 5 days after ischemia/reperfusion. In conclusion, Prx-SO3 and GAPDH-SO3 immunoreactivity and protein levels in the gerbil hippocampal CA1 region are significantly increased 12 h-24 h after ischemia/reperfusion and their immunoreactivity begins to be expressed in glial components from 4 or 5 days after ischemia/reperfusion.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | |
Collapse
|