1
|
Guida N, Serani A, Sanguigno L, Mascolo L, Cuomo O, Fioriniello S, Marano D, Ragione FD, Anzilotti S, Brancaccio P, Molinaro P, Pignataro G, Annunziato L, Formisano L. Stroke Causes DNA Methylation at Ncx1 Heart Promoter in the Brain Via DNMT1/MeCP2/REST Epigenetic Complex. J Am Heart Assoc 2024; 13:e030460. [PMID: 38456444 PMCID: PMC11010005 DOI: 10.1161/jaha.123.030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.
Collapse
Affiliation(s)
- Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Domenico Marano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| |
Collapse
|
2
|
Dauti A, Gerstl B, Chong S, Chisholm O, Anazodo A. Improvements in Clinical Trials Information Will Improve the Reproductive Health and Fertility of Cancer Patients. J Adolesc Young Adult Oncol 2017; 6:235-269. [PMID: 28207285 DOI: 10.1089/jayao.2016.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are a number of barriers that result in cancer patients not being referred for oncofertility care, which include knowledge about reproductive risks of antineoplastic agents. Without this information, clinicians do not always make recommendations for oncofertility care. The objective of this study was to describe the level of reproductive information and recommendations that clinicians have available in clinical trial protocols regarding oncofertility management and follow-up, and the information that patients may receive in clinical trials patient information sheets or consent forms. A literature review of the 71 antineoplastic drugs included in the 68 clinical trial protocols showed that 68% of the antineoplastic drugs had gonadotoxic animal data, 32% had gonadotoxic human data, 83% had teratogenic animal data, and 32% had teratogenic human data. When the clinical trial protocols were reviewed, only 22% of the protocols reported the teratogenic risks and 32% of the protocols reported the gonadotoxic risk. Only 56% of phase 3 protocols had gonadotoxic information and 13% of phase 3 protocols had teratogenic information. Nine percent of the protocols provided fertility preservation recommendations and 4% provided reproductive information in the follow-up and survivorship period. Twenty-six percent had a section in the clinical trials protocol, which identified oncofertility information easily. When gonadotoxic and teratogenic effects of treatment were known, they were not consistently included in the clinical trial protocols and the lack of data for new drugs was not reported. Very few protocols gave recommendations for oncofertility management and follow-up following the completion of cancer treatment. The research team proposes a number of recommendations that should be required for clinicians and pharmaceutical companies developing new trials.
Collapse
Affiliation(s)
- Angela Dauti
- 1 College of Arts and Sciences, Department of Chemistry, New York University , New York City, New York.,2 Population Sciences Department, Dana-Farber Cancer Institute , Boston, Massachusetts.,3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Brigitte Gerstl
- 4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia
| | - Serena Chong
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Orin Chisholm
- 5 Department of Pharmaceutical Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia
| | - Antoinette Anazodo
- 3 Department of Women's and Children's Medicine, School of Medical Sciences, University of New South Wales , Sydney, Australia .,4 Kids Cancer Centre, Sydney Children's Hospital , Sydney, Australia .,6 Nelune Comprehensive Cancer Centre, Prince of Wales Hospital , Randwick, Australia
| |
Collapse
|
3
|
Krishnan HR, Sakharkar AJ, Teppen TL, Berkel TDM, Pandey SC. The epigenetic landscape of alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:75-116. [PMID: 25131543 DOI: 10.1016/b978-0-12-801311-3.00003-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.
Collapse
Affiliation(s)
- Harish R Krishnan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Amul J Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tara L Teppen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tiffani D M Berkel
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
4
|
On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol Learn Mem 2013; 105:125-32. [PMID: 23806749 DOI: 10.1016/j.nlm.2013.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
Abstract
Dynamic variations in DNA methylation regulate neuronal gene expression in an experience-dependent manner. Although DNA methylation has been implicated in synaptic plasticity, learning and memory, active DNA demethylation is also induced by learning, which suggests that an interaction between the two processes is necessary for cognitive function. Active DNA demethylation is a complex process involving a variety of proteins and epigenetic regulatory enzymes, the understanding of which with respect to its role in the adult brain is in its infancy. We here provide an overview of the current understanding of active DNA demethylation, and describe how this process may establish persistent epigenetic states that are associated with neural plasticity and memory formation.
Collapse
|
5
|
Sui L, Wang Y, Ju LH, Chen M. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 2012; 97:425-40. [DOI: 10.1016/j.nlm.2012.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/05/2023]
|
6
|
Abstract
Although the term 'epigenetics' was coined nearly seventy years ago, its critical function in memory processing by the adult CNS has only recently been appreciated. The hypothesis that epigenetic mechanisms regulate memory and behavior was motivated by the need for stable molecular processes that evade turnover of the neuronal proteome. In this article, we discuss evidence that supports a role for neural epigenetic modifications in the formation, consolidation and storage of memory. In addition, we will review the evidence that epigenetic mechanisms regulate synaptic plasticity, a cellular correlate of memory. We will also examine how the concerted action of multiple epigenetic mechanisms with varying spatiotemporal profiles influence selective gene expression in response to behavioral experience. Finally, we will suggest key areas for future research that will help elucidate the complex, vital and still mysterious, role of epigenetic mechanisms in neural function and behavior.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F McKnight Brain Institute, 1007 Shelby Building, 1825 University Boulevard Birmingham, AL 35294-2182, USA
| | | |
Collapse
|
7
|
Lester BM, Tronick E, Nestler E, Abel T, Kosofsky B, Kuzawa CW, Marsit CJ, Maze I, Meaney MJ, Monteggia LM, Reul JMHM, Skuse DH, Sweatt JD, Wood MA. Behavioral epigenetics. Ann N Y Acad Sci 2011; 1226:14-33. [PMID: 21615751 DOI: 10.1111/j.1749-6632.2011.06037.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sponsored by the New York Academy of Sciences, the Warren Alpert Medical School of Brown University and the University of Massachusetts Boston, "Behavioral Epigenetics" was held on October 29-30, 2010 at the University of Massachusetts Boston Campus Center, Boston, Massachusetts. This meeting featured speakers and panel discussions exploring the emerging field of behavioral epigenetics, from basic biochemical and cellular mechanisms to the epigenetic modulation of normative development, developmental disorders, and psychopathology. This report provides an overview of the research presented by leading scientists and lively discussion about the future of investigation at the behavioral epigenetic level.
Collapse
Affiliation(s)
- Barry M Lester
- Department of Psychiatry, Warren Alpert Medical School, Brown University, Women and Infants Hospital, Providence, Rhode Island 02908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|