1
|
Baliellas DEM, Barros MP, Vardaris CV, Guariroba M, Poppe SC, Martins MF, Pereira ÁAF, Bondan EF. Propentofylline Improves Thiol-Based Antioxidant Defenses and Limits Lipid Peroxidation following Gliotoxic Injury in the Rat Brainstem. Biomedicines 2023; 11:1652. [PMID: 37371747 DOI: 10.3390/biomedicines11061652] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Propentofylline (PROP) is a methylated xanthine compound that diminishes the activation of microglial cells and astrocytes, which are neuronal cells strongly associated with many neurodegenerative diseases. Based on previously observed remyelination and neuroprotective effects, PROP has also been proposed to increment antioxidant defenses and to prevent oxidative damage in neural tissues. Since most neurodegenerative processes have free radicals as molecular pathological agents, the aim of this study was to evaluate the antioxidant effects of 12.5 mg·kg-1·day-1 PROP in plasma and the brainstem of Wistar rats exposed to the gliotoxic agent 0.1% ethidium bromide (EB) for 7-31 days. The bulk of the data here demonstrates that, after 7 days of EB treatment, TBARS levels were 2-fold higher in the rat CNS than in control, reaching a maximum of 2.4-fold within 15 days. After 31 days of EB treatment, lipoperoxidation in CNS was still 65% higher than that in the control. Clearly, PROP treatment limited the progression of lipoperoxidation in EB-oxidized CNS: it was, for example, 76% lower than in the EB-treated group after 15 days. Most of these effects were associated with PROP-induced activity of glutathione reductase in the brainstem: the EB + PROP group showed 59% higher GR activity than that of the EB or control groups within 7 days. In summary, aligning with previous studies from our group and with literature about MTXs, we observed that propentofylline (PROP) improved the thiol-based antioxidant defenses in the rat brainstem by the induction of the enzymatic activity of glutathione reductase (GR), which diminished lipid oxidation progression and rebalanced the redox status in the CNS.
Collapse
Affiliation(s)
- Deborah E M Baliellas
- Department of Veterinary Medicine, Cruzeiro do Sul University, São Paulo 08060070, Brazil
| | - Marcelo P Barros
- Interdisciplinary Programs in Health Sciences, Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo 01506000, Brazil
| | - Cristina V Vardaris
- Interdisciplinary Programs in Health Sciences, Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo 01506000, Brazil
| | - Maísa Guariroba
- Department of Veterinary Medicine, Cruzeiro do Sul University, São Paulo 08060070, Brazil
- Interdisciplinary Programs in Health Sciences, Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo 01506000, Brazil
| | - Sandra C Poppe
- Department of Veterinary Medicine, Cruzeiro do Sul University, São Paulo 08060070, Brazil
| | - Maria F Martins
- Department of Veterinary Medicine, Cruzeiro do Sul University, São Paulo 08060070, Brazil
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), São Paulo 04057000, Brazil
| | - Álvaro A F Pereira
- Department of Veterinary Medicine, Cruzeiro do Sul University, São Paulo 08060070, Brazil
| | - Eduardo F Bondan
- Graduate Program in Environmental and Experimental Pathology, University Paulista (UNIP), São Paulo 04057000, Brazil
| |
Collapse
|
2
|
Janitschke D, Lauer AA, Bachmann CM, Winkler J, Griebsch LV, Pilz SM, Theiss EL, Grimm HS, Hartmann T, Grimm MOW. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells. Int J Mol Sci 2022; 23:2295. [PMID: 35216410 PMCID: PMC8875332 DOI: 10.3390/ijms23042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Cornel Manuel Bachmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
3
|
Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants (Basel) 2021; 10:antiox10060858. [PMID: 34071903 PMCID: PMC8227384 DOI: 10.3390/antiox10060858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity represents one of the most important challenges in the contemporary world that must be overcome. Different pathological consequences of these physical conditions have been studied for more than 30 years. The most nagging effects were found early in the cardiovascular system. However, later, its negative impact was also investigated in several other organs. Damage at cellular structures due to overexpression of reactive oxygen species together with mechanisms that cause under-production of antioxidants leads to the development of obesity-related complications. In this view, the negative results of oxidant molecules due to obesity were studied in various districts of the body. In the last ten years, scientific literature has reported reasonable evidence regarding natural and synthetic compounds' supplementation, which showed benefits in reducing oxidative stress and inflammatory processes in animal models of obesity. This article attempts to clarify the role of oxidative stress due to obesity and the opposing role of antioxidants to counter it, reported in preclinical studies. This analysis aims to clear-up different mechanisms that lead to the build-up of pro-oxidants during obesity and how various molecules of different origins hinder this phenomenon, behaving as antioxidants.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.); (D.T.)
| | - Enea Traini
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.T.); (I.M.); (M.V.M.D.B.); (C.C.); (F.A.)
- Correspondence:
| |
Collapse
|
4
|
Olopade FE, Femi-Akinlosotu OM, Adekanmbi AJ, Ighogboja OO, Shokunbi MT. Chronic Caffeine Ingestion Improves Motor Function and Increases Dendritic Length and Arborization in the Motor Cortex, Striatum, and Cerebellum. J Caffeine Adenosine Res 2021. [DOI: 10.1089/caff.2020.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | - Matthew T. Shokunbi
- Department of Anatomy and University of Ibadan, Ibadan, Nigeria
- Department of Surgery, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Badshah H, Ikram M, Ali W, Ahmad S, Hahm JR, Kim MO. Caffeine May Abrogate LPS-Induced Oxidative Stress and Neuroinflammation by Regulating Nrf2/TLR4 in Adult Mouse Brains. Biomolecules 2019; 9:biom9110719. [PMID: 31717470 PMCID: PMC6921022 DOI: 10.3390/biom9110719] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/05/2022] Open
Abstract
Herein, we assayed the antioxidant and anti-inflammatory potential of caffeine in a lipopolysaccharide (LPS)-injected mouse model of neurodegeneration and synaptic impairment. For this purpose, LPS was injected for two weeks on an alternate-day basis (250 µg/kg/i.p. for a total of seven doses), while caffeine was injected daily for four weeks (30 mg/kg/i.p/four weeks). According to our findings, there was a significant increase in the level of reactive oxygen species (ROS), as evaluated from the levels of lipid peroxidation (LPO) and ROS assays. Also, we evaluated the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and the enzyme hemeoxygenase 1 (HO-1) in the mouse groups and found reduced expression of Nrf2 and HO-1 in the LPS-treated mice brains, but they were markedly upregulated in the LPS + caffeine co-treated group. We also noted enhanced expression of toll-Like Receptor 4 (TLR4), phospho-nuclear factor kappa B (p-NF-kB), and phospho-c-Jun n-terminal kinase (p-JNK) in the LPS-treated mice brains, which was significantly reduced in the LPS + caffeine co-treated group. Moreover, we found enhanced expression of Bcl2-associated X, apoptosis regulator (Bax), and cleaved caspase-3, and reduced expression of B-cell lymphoma 2 (Bcl-2) in the LPS-treated group, which were markedly reversed in the LPS + caffeine co-treated group. Furthermore, we analyzed the expression of synaptic proteins in the treated groups and found a marked reduction in the expression of synaptic markers in the LPS-treated group; these were significantly upregulated in the LPS + caffeine co-treated group. In summary, we conclude that caffeine may inhibit LPS-induced oxidative stress, neuroinflammation, and synaptic dysfunction.
Collapse
Affiliation(s)
- Haroon Badshah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.B.); (M.I.); (W.A.); (S.A.)
| | - Muhammad Ikram
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.B.); (M.I.); (W.A.); (S.A.)
| | - Waqar Ali
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.B.); (M.I.); (W.A.); (S.A.)
| | - Sareer Ahmad
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.B.); (M.I.); (W.A.); (S.A.)
| | - Jong Ryeal Hahm
- Department of Internal Medicine, College of Medicine, and Division of Endocrinology, Gyeongsang National University Hospital and Institute of Health Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (H.B.); (M.I.); (W.A.); (S.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
6
|
Janitschke D, Nelke C, Lauer AA, Regner L, Winkler J, Thiel A, Grimm HS, Hartmann T, Grimm MOW. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019; 9:E689. [PMID: 31684105 PMCID: PMC6920871 DOI: 10.3390/biom9110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| |
Collapse
|
7
|
Blaise JH, Park JE, Bellas NJ, Gitchell TM, Phan V. Caffeine consumption disrupts hippocampal long-term potentiation in freely behaving rats. Physiol Rep 2019; 6. [PMID: 29512310 PMCID: PMC5840440 DOI: 10.14814/phy2.13632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
Caffeine, one of the most commonly consumed psychoactive substances in the world, has long been known to alter neurological functions, such as alertness, attention, and memory. Despite caffeine's popularity, systematic investigations of its effects on synaptic plasticity in the brain are still lacking. Here we used a freely behaving rodent model of long-term potentiation (LTP), a frequently studied form of synaptic plasticity, to assess the effects of caffeine consumption on hippocampal plasticity. LTP, which is a persistent increase in the strength of synaptic connections between neurons, is a cellular mechanism widely considered to underlie the processes of learning and memory. A group of 10-week-old Sprague-Dawley rats were administered caffeine (1 g/L) in their drinking water 3 weeks prior to collection of electrophysiological data. Another group of age-matched animals received tap water and served as controls. Stimulating and recording electrodes were chronically implanted in the perforant pathway (PP) and dentate gyrus (DG) region of the hippocampus, respectively, to permit stable electrophysiological recordings of synaptic transmission at this synapse. Population spike amplitude (PSA) measures of LTP induction and duration were acquired in vivo while animals were freely behaving using a well-established electrophysiological recording protocol. Results indicate caffeine-treated rats (n = 9) had a significantly (P < 0.05) reduced level of LTP induction compared with controls (n = 10). More studies are needed to identify the exact mechanism through which caffeine alters LTP induction in this freely behaving model of synaptic plasticity.
Collapse
Affiliation(s)
- J Harry Blaise
- Interdisciplinary Science Program, Trinity College, Hartford, Connecticut.,Neuroscience Program, Trinity College, Hartford, Connecticut.,Engineering Department, Trinity College, Hartford, Connecticut
| | - Jee E Park
- Interdisciplinary Science Program, Trinity College, Hartford, Connecticut.,Biology Department, Trinity College, Hartford, Connecticut
| | - Nicholas J Bellas
- Interdisciplinary Science Program, Trinity College, Hartford, Connecticut.,Chemistry Department, Trinity College, Hartford, Connecticut
| | - Thomas M Gitchell
- Interdisciplinary Science Program, Trinity College, Hartford, Connecticut.,Neuroscience Program, Trinity College, Hartford, Connecticut
| | - Vy Phan
- Interdisciplinary Science Program, Trinity College, Hartford, Connecticut.,Neuroscience Program, Trinity College, Hartford, Connecticut
| |
Collapse
|
8
|
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 2018; 123:298-313. [PMID: 30291944 DOI: 10.1016/j.fct.2018.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.
Collapse
Affiliation(s)
- Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção: Centro de Ciências Farmacêuticas, Químicas e de Alimentos, UFPel, Campus Capão do Leão 96010-900, Pelotas, RS, Brazil
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Lisiane Porciúncula
- Departamento de Bioquímica, UFRGS, 90040-060, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-graduação em Biologia Celular e Molecular Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Caffeine Prevents Memory Impairment Induced by Hyperhomocysteinemia. J Mol Neurosci 2018; 66:222-228. [PMID: 30140995 DOI: 10.1007/s12031-018-1158-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
L-Methionine chronic administration leads to impairment of memory. This impairment is due to the increase in the body oxidative stress, which damages neurons and prevents their firing. On the other hand, caffeine has antioxidant and neuroprotective effects that could prevent impairment of memory induced by L-methionine chronic administration. In the current study, this hypothesis was evaluated. L-methionine (1.7 g/kg/day) was orally administered to animals for 4 weeks and caffeine (0.3 g/L) treatment was added to the drinking water. The radial arm water maze (RAWM) was used to test spatial learning and memory. Antioxidant biomarkers were assessed in the hippocampus tissues using biochemical assay methods. Chronic L-methionine administration induced (short- and long-) term memory impairment (P < 0.05), while caffeine treatment prevented such effect. Additionally, L-methionine treatment reduced catalase and glutathione peroxidase (GPx") enzymatic activities, and reduced glutathione (GSH) to oxidized glutathione (GSSG) ratio. These effects were normalized by caffeine treatment. Activity of superoxide dismutase (SOD) was unchanged by either L-methionine or caffeine treatments. In conclusion, L-methionine induces impairment of memory, and caffeine treatment prevented this impairment probably through affecting hippocampus antioxidant mechanisms.
Collapse
|
10
|
Park HJ, Shim HS, Lee S, Hahm DH, Lee H, Oh CT, Han HJ, Ji HJ, Shim I. Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:149. [PMID: 29739458 PMCID: PMC5941529 DOI: 10.1186/s12906-018-2193-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. METHODS The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. RESULTS Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). CONCLUSION This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.
Collapse
|
11
|
Perinatal exposure to energy drink induces oxidative damage in the liver, kidney and brain, and behavioral alterations in mice offspring. Biomed Pharmacother 2018; 102:798-811. [PMID: 29605768 DOI: 10.1016/j.biopha.2018.03.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The worldwide consumption of energy drinks (EDs) has increased in recent years. EDs have several side effects and can be linked to liver injury, kidney damage and risk-seeking behavior. The impact of perinatal consumption of EDs on the newborns has not been previously investigated. In this study, we evaluated the effects of perinatal exposure to a caffeinated ED on the liver, kidney, brain, locomotor activity and anxiety in mice newborns. Pregnant mice received 2.5 or 5 ml ED by oral gavage from the first day of pregnancy until day 15 after birth. Perinatal exposure to the ED induced a significant increase in lipid peroxidation and declined antioxidant defenses in the liver, kidney, cerebrum, cerebellum and medulla oblongata of the newborns at days 21 and 35 after birth. ED induced several histological alterations, including vacuolations and lipid infiltration of hepatocytes, developing and degenerated glomeruli and dilated urinary spaces in the renal cortex, pyknosis and chromatolysis of the cerebral and medullary neurons, and degenerated and abnormal Purkinje cells in the cerebellum. In addition, ED increased the locomotion and induced anxiety-like behavior in mice newborns. In conclusion, perinatal exposure to EDs induces oxidative stress, tissue injury and behavioral alterations in the mice newborns. Therefore, the consumption of EDs during pregnancy and lactation has a negative impact on the newborns and should be treated as a significant health problem that warrants attention.
Collapse
|
12
|
Górska AM, Kamińska K, Wawrzczak-Bargieła A, Costa G, Morelli M, Przewłocki R, Kreiner G, Gołembiowska K. Neurochemical and Neurotoxic Effects of MDMA (Ecstasy) and Caffeine After Chronic Combined Administration in Mice. Neurotox Res 2018; 33:532-548. [PMID: 29134560 PMCID: PMC5871650 DOI: 10.1007/s12640-017-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/04/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.
Collapse
Affiliation(s)
- Anna Maria Górska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| |
Collapse
|
13
|
Gomes Júnior AL, Tchekalarova JD, Machado KDC, Moura AKS, Paz MFCJ, da Mata AMOF, Nogueira TR, Islam MT, Rios MADS, Graças Lopes Citó AMD, Uddin SJ, Shilpi JA, Das AK, Lopes LDS, Melo-Cavalcante AADC. Anxiolytic effect of anacardic acids from cashew (Anacardium occidentale) nut shell in mice. IUBMB Life 2018; 70:420-431. [PMID: 29573147 DOI: 10.1002/iub.1738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
Abstract
Antianxiety drugs currently in use are associated with a number of serious side effects. Present study was designed to evaluate the efficacy of anacardic acids (AAs) isolated from cashew nut (Anacardium occidentale L.) shell liquid (CNSL) to treat anxiety as well as its role in oxidative stress in mice model. Anxiolytic effect of AA was evaluated using rota-rod and a set of behavioral tests in male Swiss albino mice at the doses of 10, 25, and 50 mg/kg. Flumazenil was used to evaluate the possible involvement of GABAergic system in the mechanism of action of AA. The effect of AA on oxidative stress in mice was evaluated by determining the concentration of malondialdehyde (MDA), reduced glutathione, and catalase (CAT) activity. The detection of DNA damage of the treated animals was performed using alkaline comet test in the hippocampus and frontal cortex of the animals. The results demonstrated that AA did not produce myorelaxant and sedative effects, nor did it cause a decrease in locomotor activity. The anxiolytic effect of AA was well-evident in all tests, especially at higher dose levels (25 and 50 mg/mg). Flumazenil reversed the anxiolytic effect of AA at all doses. In addition, AA reduced oxidative stress by decreasing the concentration of MDA and increasing the levels of reduced glutathione (GSH) and CAT activity. Statistical analysis by Pearson's correlation indicated a positive correlation between anxiolytic effect of AA to its antioxidant and lipid peroxidation inhibitory activity. Furthermore, increased CAT activity and GSH concentrations in the hippocampus and frontal cortex of mice was also complementary to the reduced genotoxic damage observed in the study. In comet assay, AA did not increase in DNA damage. In conclusion, the results supported that AA possesses GABAA receptor mediated anxiolytic activity with the lack of myorelaxation and genotoxicity. © 2018 IUBMB Life, 70(5):420-431, 2018.
Collapse
Affiliation(s)
- Antonio Luiz Gomes Júnior
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil.,Program of Postgraduate in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | - Keylla da Conceição Machado
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil.,Program of Postgraduate in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Arkellau Kenned Silva Moura
- Department of Chemistry, Science Center of Nature, Federal University of Piauí, University Campus Minister Petrônio Portella, Teresina, PI, Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil.,Program of Postgraduate in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | - Tiago Rocha Nogueira
- Technological Innovation Group and Chemical Specialties - GRINTEQUI, Federal University of Ceará, Fortaleza, Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Maria Alexsandra de Sousa Rios
- Department of Chemistry, Science Center of Nature, Federal University of Piauí, University Campus Minister Petrônio Portella, Teresina, PI, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Department of Chemistry, Science Center of Nature, Federal University of Piauí, University Campus Minister Petrônio Portella, Teresina, PI, Brazil
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asish K Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Luciano da Silva Lopes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil.,Program of Postgraduate in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
14
|
Chronic Stress Causes Sex-Specific and Structure-Specific Alterations in Mitochondrial Respiratory Chain Activity in Rat Brain. Neurochem Res 2017; 42:3331-3340. [DOI: 10.1007/s11064-017-2375-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 10/18/2022]
|
15
|
Valle MTC, Couto-Pereira NS, Lampert C, Arcego DM, Toniazzo AP, Limberger RP, Dallegrave E, Dalmaz C, Arbo MD, Leal MB. Energy drinks and their component modulate attention, memory, and antioxidant defences in rats. Eur J Nutr 2017; 57:2501-2511. [DOI: 10.1007/s00394-017-1522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
16
|
Akomolafe SF, Akinyemi AJ, Ogunsuyi OB, Oyeleye SI, Oboh G, Adeoyo OO, Allismith YR. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain-In vitro. Neurotoxicology 2017; 62:6-13. [PMID: 28465162 DOI: 10.1016/j.neuro.2017.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-51-nucleotidase (E-NTDase) and Na+/K+ ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe2+ and Cu2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na+/K+ ATPase activity. The combinations also exhibited Fe2+ and Cu2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects.
Collapse
Affiliation(s)
- S F Akomolafe
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Private Mail Bag 5363, Nigeria.
| | - A J Akinyemi
- Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Private Mail Bag 5454, Nigeria
| | - O B Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria; Department of Biomedical Technology, School of Health and Health Technology, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - S I Oyeleye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria; Department of Biomedical Technology, School of Health and Health Technology, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - G Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - O O Adeoyo
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Private Mail Bag 704, Akure 340001, Nigeria
| | - Y R Allismith
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Private Mail Bag 5363, Nigeria
| |
Collapse
|
17
|
Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res 2017; 61. [PMID: 28074613 DOI: 10.1002/mnfr.201600670] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/24/2023]
Abstract
Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs.
Collapse
Affiliation(s)
| | - Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
18
|
Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 2017; 168:1-10. [DOI: 10.1016/j.physbeh.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
19
|
Segalà L, Forte M, Ortega MR, Delgado S, Rammohan K, Levin BE. Moderate Caffeine Intake and Verbal Memory in Multiple Sclerosis: A Pilot Study. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Laura Segalà
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayte Forte
- Department of Psychology, University of Massachusetts-Boston, Boston, Massachusetts
| | - Melissa R. Ortega
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kottil Rammohan
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Psychology, University of Miami, Coral Gables, Florida
| |
Collapse
|
20
|
Onaolapo JO, Onaolapo YA, Akanmu AM, Olayiwola G. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice. Sleep Sci 2016; 9:236-243. [PMID: 28123668 PMCID: PMC5241623 DOI: 10.1016/j.slsci.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. METHODS Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (subdivided into 6 groups of 10 each, based on sex), and administered vehicle or graded oral doses of caffeine (10, 20, 40, 80 and 120 mg/kg/day) for 14 days. On day 14, a main group was subjected to 6 h of total sleep-deprivation by 'gentle-handling'. Open-field behaviours were then assessed in both groups, after which animals were euthanized, and levels of corticosterone, superoxide dismutase and glutathione peroxidase assayed. RESULTS Horizontal locomotion, rearing and grooming increased significantly, compared to control, with sleep-deprived (SD) mice showing stronger caffeine-driven responses at higher doses; and SD female mice showing sustained response to caffeine, compared to respective males. Plasma corticosterone increased with increasing doses of caffeine in both non sleep-deprived (NSD) and SD mice; although SD mice had higher corticosterone levels. Sleep-deprivation and/or higher doses of caffeine were associated with derangements in brain antioxidant levels. CONCLUSION Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.
Collapse
Affiliation(s)
- J. Olakunle Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun, Nigeria
| | - Y. Adejoke Onaolapo
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A. Moses Akanmu
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile, Ife, Osun State, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile, Ife, Osun State, Nigeria
| |
Collapse
|
21
|
Phytochemical Constituents and Toxicity of Duguetia furfuracea Hydroalcoholic Extract in Drosophila melanogaster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:838101. [PMID: 25435894 PMCID: PMC4243765 DOI: 10.1155/2014/838101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 01/24/2023]
Abstract
Duguetia furfuracea is frequently used as a medicinal plant in Brazil. However, studies have evidenced its cytotoxic, bactericide, and antitumor activities. In the present study we aimed to evaluate the potential toxicity of hydroalcoholic leaves extracts of D. furfuracea (HEDF) in a Drosophila melanogaster model. Toxicity was assessed as changes in locomotor performance, mitochondrial activity, oxidative stress, MAPKs phosphorylation, and apoptosis induction after exposure to HEDF concentrations (1–50 mg/mL) for 7 days. The phytoconstituents of the plant were screened for the presence of alkaloids, tannins, xanthones, chalcones, flavonoids, aurones, and phenolic acids. Exposure of adult flies to HEDF caused mitochondrial dysfunction, overproduction of ROS, and alterations in the activity of detoxifying enzymes GST, SOD and CAT. Induction of ERK phosphorylation and PARP cleavage was also observed, indicating occurrence of HEDF-induced cell stress and apoptotic cell death. In parallel, alterations in cholinesterase activity and impairments in negative geotaxis behavior were observed. Our study draws attention to the indiscriminate use of this plant by population and suggests oxidative stress as a major mechanism underlying its toxicity.
Collapse
|
22
|
The effect of caffeine on MDMA-induced hydroxyl radical production in the mouse striatum. Pharmacol Rep 2014; 66:718-21. [DOI: 10.1016/j.pharep.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
|
23
|
Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats. Exp Gerontol 2014; 53:67-73. [DOI: 10.1016/j.exger.2014.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
|
24
|
R K, D M A, C N, S N W, C D. Oxidative imbalance and anxiety disorders. Curr Neuropharmacol 2014; 12:193-204. [PMID: 24669212 PMCID: PMC3964749 DOI: 10.2174/1570159x11666131120223530] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 11/02/2013] [Indexed: 01/22/2023] Open
Abstract
The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies.
Collapse
Affiliation(s)
- Krolow R
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arcego D M
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Noschang C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Weis S N
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dalmaz C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
|
26
|
Gołembiowska K, Wardas J, Noworyta-Sokołowska K, Kamińska K, Górska A. Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson's disease. Neurotox Res 2013; 24:29-40. [PMID: 23296550 PMCID: PMC3666128 DOI: 10.1007/s12640-012-9372-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/20/2022]
Abstract
The study shows effects of the nonselective adenosine A1/A2A receptor antagonist caffeine and the selective A2A receptor antagonist KW6002 on LPS-induced changes in the extracellular levels of dopamine (DA), glutamate, adenosine, hydroxyl radical, and A2A receptor density in the rat striatum. Intrastriatal LPS (10 μg) injection decreased extracellular level of DA and increased the level of adenosine, glutamate, and hydroxyl radical on the ipsilateral side 24 h after LPS administration. Caffeine (10 and 20 mg/kg i.p.) and KW6002 (1.5 and 3 mg/kg i.p.) given once daily for 6 days and on the 7th day 2 h before and 4 h after LPS injection reversed the LPS-induced changes in extracellular levels of DA, adenosine, glutamate, and hydroxyl radical production. Moreover, LPS-induced decrease in the striatal A2A receptor density was increased by caffeine and KW6002. In order to show the late LPS effect on oxidative damage of DA neurons, the contents of DA, DOPAC, HVA, and hydroxyl radical were determined 72 h after LPS (10 μg) administration into both striata. LPS decreased striatal and substantia nigra content of DA, DOPAC, and HVA while increased striatal but not nigral content of hydroxyl radical. Caffeine (20 mg/kg) and KW60002 (3 mg/kg) given once daily for 6 days and on the 7th day 2 h before and 4 h after intrastriatal injection of LPS normalized the content of DA and its metabolites in both brain regions as well as decreased LPS-induced increase in the striatal level of hydroxyl radical. In conclusion, our data demonstrated antioxidant effects of caffeine and KW6002 in the inflammatory model of PD.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| | | | | | | | | |
Collapse
|
27
|
Kalaz EB, Evran B, Develi-İş S, Vural P, Dogru-Abbasoglu S, Uysal M. Effect of carnosine on prooxidant-antioxidant balance in several tissues of rats exposed to chronic cold plus immobilization stress. J Pharmacol Sci 2013; 120:98-104. [PMID: 23079503 DOI: 10.1254/jphs.12107fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, we investigated the effect of L-carnosine (CAR) on prooxidant-antioxidant balance in several tissues of rats exposed to chronic stress. Both cold and immobilization stresses were applied to rats at the same time. In the stress group, rats were placed in restraint cages and kept in a cold room (+4°C) for 1 h for 21 days (5 days a week). Rats were injected with CAR (250 mg/kg, i.p.) at 30 min before stress application. Malondialdehyde, diene conjugate, protein carbonyl and nitrotyrosine levels, nonenzymatic (glutathione, vitamin E, and vitamin C), and enzymatic (catalase, superoxide dismutase and glutathione peroxidase) antioxidants were determined in the liver, heart, and brain tissues. Chronic cold plus immobilization stress was observed to affect especially the prooxidant-antioxidant status in the brain tissue of rats. This is the first report showing the beneficial effects of CAR on oxidative stress in the brain in rats exposed to stress.
Collapse
Affiliation(s)
- Esra Betül Kalaz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Domschke K, Gajewska A, Winter B, Herrmann MJ, Warrings B, Mühlberger A, Wosnitza K, Glotzbach E, Conzelmann A, Dlugos A, Fobker M, Jacob C, Arolt V, Reif A, Pauli P, Zwanzger P, Deckert J. ADORA2A Gene variation, caffeine, and emotional processing: a multi-level interaction on startle reflex. Neuropsychopharmacology 2012; 37:759-69. [PMID: 22012471 PMCID: PMC3260968 DOI: 10.1038/npp.2011.253] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is converging evidence for genetic, biochemical, and neuropsychological factors to increase the risk for anxiety and anxiety disorders. The pathogenesis of anxiety disorders is assumed to be influenced by a complex interaction of these individual risk factors on several levels, affecting intermediate phenotypes of anxiety such as the startle reflex. Thus, in the present double-blind, placebo-controlled study we attempted to paradigmatically investigate a multi-level pathogenetic model of anxiety by testing the effect of 300 mg caffeine citrate as an antagonist at the adenosine A2A receptor vs placebo on the emotion-potentiated (unpleasant, neutral, and pleasant International Affective Picture System pictures) startle reflex in 110 healthy individuals (male=56, female=54) stratified for the adenosine A2A receptor (ADORA2A) 1976T>C polymorphism (rs5751876). In addition to the expected main effect of picture category (highest startle amplitude for unpleasant, lowest for pleasant pictures) groups across all ADORA2A 1976T>C genotype and intervention (caffeine vs placebo) groups, an interaction effect of genotype, intervention, and picture category was discerned: In ADORA2A 1976TT risk genotype carriers, highest startle magnitudes were observed after caffeine administration in response to unpleasant pictures, with this effect arising particularly from the female subgroup. Our data point to a complex, multi-level, and potentially gender-specific pathogenetic model of anxiety, with genetic and biochemical factors interactively increasing the risk of maladaptive emotional processing and thereby possibly also anxiety disorders. The present findings may eventually aid in improving primary and secondary prevention by sharpening the risk profiles of anxiety-prone individuals.
Collapse
Affiliation(s)
| | | | - Bernward Winter
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Martin J Herrmann
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Bodo Warrings
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Evelyn Glotzbach
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Andrea Dlugos
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, University of Muenster, Muenster, Germany
| | - Christian Jacob
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Andreas Reif
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Paul Pauli
- Department of Psychology, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Jürgen Deckert
- Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 2011; 99:659-64. [DOI: 10.1016/j.pbb.2011.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 12/20/2022]
|
30
|
Profile of nucleotide catabolism and ectonucleotidase expression from the hippocampi of neonatal rats after caffeine exposure. Neurochem Res 2011; 37:23-30. [PMID: 21842269 DOI: 10.1007/s11064-011-0577-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/18/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1-8) and 5'-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5'-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.
Collapse
|
31
|
Effects of chronic restraint stress and 17-β-estradiol replacement on oxidative stress in the spinal cord of ovariectomized female rats. Neurochem Res 2010; 35:1700-7. [PMID: 20632091 DOI: 10.1007/s11064-010-0232-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2010] [Indexed: 01/02/2023]
Abstract
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.
Collapse
|