1
|
Garcia IJP, Kinoshita PF, Valadares JMDM, de Carvalho LED, Cortes VF, Barbosa LA, Scavone C, Santos HDL. Effect of Ouabain on Glutamate Transport in the Hippocampus of Rats with LPS-Induced Neuroinflammation. Biomedicines 2023; 11:biomedicines11030920. [PMID: 36979899 PMCID: PMC10045517 DOI: 10.3390/biomedicines11030920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
A lipopolysaccharide (LPS)-induced neuroinflammation rat model was used to study the effects of ouabain (OUA) at low concentrations, which can interact with the Na,K-ATPase, causing the modulation of intracellular signalling pathways in the Central Nervous System. Our study aimed to analyse the effects of OUA on glutamate transport in the hippocampus of rats with LPS-induced neuroinflammation. Adult male Wistar rats were divided into four groups: OUA (1.8 µg/kg), saline (CTR), LPS (200 µg/kg), and OUA + LPS (OUA 20 min before LPS). The animals were sacrificed after 2 h, and the hippocampus was collected for analysis. After treatment, we determined the activities of Na,K-ATPase and glutamine synthetase (GS). In addition, expression of the α1, α2, and α3 isoforms of Na,K-ATPase and the glutamate transporters, EAAT1 and EAAT2, were also analysed. Treatment with OUA caused a specific increase in the α2 isoform expression (~20%), whereas LPS decreased its expression (~22%), and treatment with OUA before LPS prevented the effects of LPS. Moreover, LPS caused a decrease of approximately 50% in GS activity compared with that in the CTR group; however, OUA pre-treatment attenuated this effect of LPS. Notably, it was found that treatment with OUA caused an increase in the expression of EAAT1 (~30%) and EAAT2 (~25%), whereas LPS caused a decrease in the expression of EAAT1 (~23%) and EAAT2 (~25%) compared with that in the CTR group. When treated with OUA, the effects of LPS were abrogated. In conclusion, the OUA pre-treatment abolished the effect caused by LPS, suggesting that this finding may be related to the restoration of the interaction between FXYD2 and the studied membrane proteins.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Paula Fernanda Kinoshita
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica Martins de Moura Valadares
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Luciana Estefani Drumond de Carvalho
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Vanessa Faria Cortes
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| | - Hérica de Lima Santos
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| |
Collapse
|
2
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood–brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Gennadii Piavchenko,
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
- Igor Meglinski,
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
4
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
5
|
Braidy N, Alicajic H, Pow D, Smith J, Jugder BE, Brew BJ, Nicolazzo JA, Guillemin GJ. Potential Mechanism of Cellular Uptake of the Excitotoxin Quinolinic Acid in Primary Human Neurons. Mol Neurobiol 2020; 58:34-54. [PMID: 32894500 DOI: 10.1007/s12035-020-02046-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023]
Abstract
In Alzheimer's disease (AD), excessive amounts of quinolinic acid (QUIN) accumulate within the brain parenchyma and dystrophic neurons. QUIN also regulates glutamate uptake into neurons, which may be due to modulation of Na+-dependent excitatory amino acid transporters (EAATs). To determine the biological relationships between QUIN and glutamate dysfunction, we first quantified the functionality and kinetics of [3H]QUIN uptake in primary human neurons using liquid scintillation. We then measured changes in the protein expression of the glutamate transporter EAAT3 and EAAT1b in primary neurons treated with QUIN and the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (2,4-PDC) using western blotting and immunohistochemistry. Immunohistochemistry was further used to elucidate intracellular transport of exogenous QUIN and the lysosomal-associated membrane protein 2 (LAMP2). Structural insights into the binding between QUIN and EAAT3 were further investigated using molecular docking techniques. We report significant temperature-dependent high-affinity transport leading to neuronal uptake of [3H]QUIN with a Km of 42.2 μM, and a Vmax of 9.492 pmol/2 min/mg protein, comparable with the uptake of glutamate. We also found that QUIN increases expression of the EAAT3 monomer while decreasing the functional trimer. QUIN uptake into primary neurons was shown to involve EAAT3 as uptake was significantly attenuated following EAAT inhibition. We also demonstrated that QUIN increases the expression of aberrant EAAT1b protein in neurons further implicating QUIN-induced glutamate dysfunction. Furthermore, we demonstrated that QUIN is metabolised exclusively in lysosomes. The involvement of EAAT3 as a modulator for QUIN uptake was further confirmed using molecular docking. This study is the first to characterise a mechanism for QUIN uptake into primary human neurons involving EAAT3, opening potential targets to attenuate QUIN-induced excitotoxicity in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- School of Medicine, Huzhou University, Wuxing District, Huzhou, Zhejiang, China.
| | - Hayden Alicajic
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia
| | - David Pow
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Jason Smith
- Department of Chemistry and Biomolecular sciences, Macquarie University, Sydney, NSW, Australia
| | - Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Bruce J Brew
- St Vincent's Centre for Applied Medical Research, Sydney, Australia
- Department of Neurology and HIV Medicine, St Vincent's Hospital, Sydney, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gilles J Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, 2019, Australia.
| |
Collapse
|
6
|
Creighton BA, Ruffins TW, Lorenzo DN. Visualizing and Analyzing Intracellular Transport of Organelles and Other Cargos in Astrocytes. J Vis Exp 2019. [PMID: 31524875 DOI: 10.3791/60230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Astrocytes are among the most abundant cell types in the adult brain, where they play key roles in a multiplicity of functions. As a central player in brain homeostasis, astrocytes supply neurons with vital metabolites and buffer extracellular water, ions, and glutamate. An integral component of the "tri-partite" synapse, astrocytes are also critical in the formation, pruning, maintenance, and modulation of synapses. To enable these highly interactive functions, astrocytes communicate among themselves and with other glial cells, neurons, the brain vasculature, and the extracellular environment through a multitude of specialized membrane proteins that include cell adhesion molecules, aquaporins, ion channels, neurotransmitter transporters, and gap junction molecules. To support this dynamic flux, astrocytes, like neurons, rely on tightly coordinated and efficient intracellular transport. Unlike neurons, where intracellular trafficking has been extensively delineated, microtubule-based transport in astrocytes has been less studied. Nonetheless, exo- and endocytic trafficking of cell membrane proteins and intracellular organelle transport orchestrates astrocytes' normal biology, and these processes are often affected in disease or in response to injury. Here we present a straightforward protocol to culture high quality murine astrocytes, to fluorescently label astrocytic proteins and organelles of interest, and to record their intracellular transport dynamics using time-lapse confocal microscopy. We also demonstrate how to extract and quantify relevant transport parameters from the acquired movies using available image analysis software (i.e., ImageJ/FIJI) plugins.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Theodore W Ruffins
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill;
| |
Collapse
|
7
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
8
|
Kashem MA, Sultana N, Pow DV, Balcar VJ. GLAST (GLutamate and ASpartate Transporter) in human prefrontal cortex; interactome in healthy brains and the expression of GLAST in brains of chronic alcoholics. Neurochem Int 2019; 125:111-116. [PMID: 30817938 DOI: 10.1016/j.neuint.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
Abstract
We have analysed post-mortem samples of prefrontal cortex from control and alcoholic human brains by the technique of Western blotting to estimate and compare the expressions of glutamate transporter GLAST (Excitatory Amino Acid Transporter One; EAAT1). Furthermore, using the non-alcoholic prefrontal cortex and custom-made GLAST (EAAT1) antibody we determined GLAST (EAAT1) "interactome" i.e. the set of proteins selectively bound by GLAST (EAAT1). We found that GLAST (EAAT1) was significantly more abundant (about 1.6-fold) in the cortical tissue from alcoholic brains compared to that from non-alcoholic controls. The greatest increase in the level of GLAST (EAAT1) was found in plasma membrane fraction (2.2-fold). Additionally, using the prefrontal cortical tissue from control brains, we identified 38 proteins specifically interacting with GLAST (EAAT1). These can be classified as contributing to the cell structure (6 proteins; 16%), energy and general metabolism (18 proteins; 47%), neurotransmitter metabolism (three proteins; 8%), signalling (6 proteins: 16%), neurotransmitter storage/release at synapses (three proteins; 8%) and calcium buffering (two proteins; 5%). We discuss possible consequences of the increased expression of GLAST (EAAT1) in alcoholic brain tissue and whether or how this could disturb the function of the proteins potentially interacting with GLAST (EAAT1) in vivo. The data represent an extension of our previous proteomic and metabolomic studies of human alcoholism revealing another aspect of the complexity of changes imposed on brain by chronic long-term consumption of ethanol.
Collapse
Affiliation(s)
- Mohammed Abul Kashem
- School of Medical Sciences, Bosch Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nilufa Sultana
- School of Medical Sciences, Bosch Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David V Pow
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, QLD, 4029, Australia
| | - Vladimir J Balcar
- School of Medical Sciences, Bosch Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019; 8:E184. [PMID: 30791579 PMCID: PMC6406900 DOI: 10.3390/cells8020184] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes' intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
10
|
Kashem MA, Sultana N, Balcar VJ. Exposure of Rat Neural Stem Cells to Ethanol Affects Cell Numbers and Alters Expression of 28 Proteins. Neurochem Res 2018; 43:1841-1854. [PMID: 30043189 DOI: 10.1007/s11064-018-2600-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
Abstract
Developing brain cells express many proteins but little is known of how their protein composition responds to chronic exposure to alcohol and/or how such changes might relate to alcohol toxicity. We used cultures derived from embryonic rat brain (previously shown to contain mostly neural stem cells; rat NSC, rNSC), exposed them to ethanol (25-100 mM) for up to 96 h and studied how they reacted. Ethanol (50 and 100 mM) reduced cell numbers indicating either compromised cell proliferation, cytotoxicity or both. Increased lipid peroxidation was consistent with the presence of oxidative stress accompanying alcohol-induced cytotoxicity. Proteomics revealed 28 proteins as altered by ethanol (50 mM for 96 h). Some were constituents of cytoskeleton, others were involved in transcription/translation, signal transduction and oxidative stress. Nucleophosmin (NPM1) and dead-end protein homolog 1 (DND1) were further studied by immunological techniques in cultured neurons and astrocytes (derived from brain tissue at embryonic ages E15 and E20, respectively). In the case of DND1 (but not NPM1) ethanol induced similar pattern of changes in both types of cells. Given the critical role of the protein NPM1 in cell proliferation and differentiation, its reduced expression in the ethanol-exposed rNSC could, in part, explain the lower cells numbers. We conclude that chronic ethanol profoundly alters protein composition of rNSC to the extent that their functioning-including proliferation and survival-would be seriously compromised. Translated to humans, such changes could point the way towards mechanisms underlying the fetal alcohol spectrum disorder and/or alcoholism later in life.
Collapse
Affiliation(s)
- Mohammed A Kashem
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Anderson Stuart Building F13, Sydney, NSW, 2006, Australia
| | - Nilufa Sultana
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Anderson Stuart Building F13, Sydney, NSW, 2006, Australia
| | - Vladimir J Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Anderson Stuart Building F13, Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Chi-Castañeda D, Ortega A. Circadian Regulation of Glutamate Transporters. Front Endocrinol (Lausanne) 2018; 9:340. [PMID: 29977228 PMCID: PMC6021491 DOI: 10.3389/fendo.2018.00340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS). This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation) of glutamate transport in neuronal and glial cells, and their consequence in brain function.
Collapse
|
12
|
Krycer JR, Fazakerley DJ, Cater RJ, C Thomas K, Naghiloo S, Burchfield JG, Humphrey SJ, Vandenberg RJ, Ryan RM, James DE. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett 2017; 591:322-330. [PMID: 28032905 DOI: 10.1002/1873-3468.12549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
The hormone insulin coordinates the catabolism of nutrients by protein phosphorylation. Phosphoproteomic analysis identified insulin-responsive phosphorylation of the Glu/Asp transporter SLC1A3/EAAT1 in adipocytes. The role of SLC1A3 in adipocytes is not well-understood. We show that SLC1A3 is localised to the plasma membrane and the major regulator of acidic amino acid uptake in adipocytes. However, its localisation and activity were unaffected by insulin or mutation of the insulin-regulated phosphosite. The latter was also observed using a heterologous expression system in Xenopus laevis oocytes. Thus, SLC1A3 maintains a constant import of acidic amino acids independently of nutritional status in adipocytes.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Rosemary J Cater
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Kristen C Thomas
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sheyda Naghiloo
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Robert J Vandenberg
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Renae M Ryan
- Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, NSW, Australia
| |
Collapse
|
13
|
Regulation of Glutamate Transporter Expression in Glial Cells. ADVANCES IN NEUROBIOLOGY 2017; 16:199-224. [DOI: 10.1007/978-3-319-55769-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Martinez-Lozada Z, Guillem AM, Robinson MB. Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:103-45. [PMID: 27288076 DOI: 10.1016/bs.apha.2016.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. It mediates essentially all rapid excitatory signaling. Dysfunction of glutamatergic signaling contributes to developmental, neurologic, and psychiatric diseases. Extracellular glutamate is cleared by a family of five Na(+)-dependent glutamate transporters. Two of these transporters (GLAST and GLT-1) are relatively selectively expressed in astrocytes. Other of these transporters (EAAC1) is expressed by neurons throughout the nervous system. Expression of the last two members of this family (EAAT4 and EAAT5) is almost exclusively restricted to specific populations of neurons in cerebellum and retina, respectively. In this review, we will discuss our current understanding of the mechanisms that control transcriptional regulation of the different members of this family. Over the last two decades, our understanding of the mechanisms that regulate expression of GLT-1 and GLAST has advanced considerably; several specific transcription factors, cis-elements, and epigenetic mechanisms have been identified. For the other members of the family, little or nothing is known about the mechanisms that control their transcription. It is assumed that by defining the mechanisms involved, we will advance our understanding of the events that result in cell-specific expression of these transporters and perhaps begin to define the mechanisms by which neurologic diseases are changing the biology of the cells that express these transporters. This approach might provide a pathway for developing new therapies for a wide range of essentially untreatable and devastating diseases that kill neurons by an excitotoxic mechanism.
Collapse
Affiliation(s)
- Z Martinez-Lozada
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - A M Guillem
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - M B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Young AMH, Chakrabarti B, Roberts D, Lai MC, Suckling J, Baron-Cohen S. From molecules to neural morphology: understanding neuroinflammation in autism spectrum condition. Mol Autism 2016; 7:9. [PMID: 26793298 PMCID: PMC4719563 DOI: 10.1186/s13229-016-0068-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Growing evidence points toward a critical role for early (prenatal) atypical neurodevelopmental processes in the aetiology of autism spectrum condition (ASC). One such process that could impact early neural development is inflammation. We review the evidence for atypical expression of molecular markers in the amniotic fluid, serum, cerebrospinal fluid (CSF), and the brain parenchyma that suggest a role for inflammation in the emergence of ASC. This is complemented with a number of neuroimaging and neuropathological studies describing microglial activation. Implications for treatment are discussed.
Collapse
Affiliation(s)
- Adam M H Young
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, UK ; School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, UK ; Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Science, University of Reading, Reading, UK
| | - David Roberts
- School of Clinical Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, UK ; Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada ; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK ; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge, UK ; CLASS Clinic, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
16
|
Šerý O, Sultana N, Kashem MA, Pow DV, Balcar VJ. GLAST But Not Least--Distribution, Function, Genetics and Epigenetics of L-Glutamate Transport in Brain--Focus on GLAST/EAAT1. Neurochem Res 2015; 40:2461-72. [PMID: 25972039 DOI: 10.1007/s11064-015-1605-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Synaptically released L-glutamate, the most important excitatory neurotransmitter in the CNS, is removed from extracellular space by fast and efficient transport mediated by several transporters; the most abundant ones are EAAT1/GLAST and EAAT2/GLT1. The review first summarizes their location, functions and basic characteristics. We then look at genetics and epigenetics of EAAT1/GLAST and EAAT2/GLT1 and perform in silico analyses of their promoter regions. There is one CpG island in SLC1A2 (EAAT2/GLT1) gene and none in SLC1A3 (EAAT1/GLAST) suggesting that DNA methylation is not the most important epigenetic mechanism regulating EAAT1/GLAST levels in brain. There are targets for specific miRNA in SLC1A2 (EAAT2/GLT1) gene. We also note that while defects in EAAT2/GLT1 have been associated with various pathological states including chronic neurodegenerative diseases, very little is known on possible contributions of defective or dysfunctional EAAT1/GLAST to any specific brain disease. Finally, we review evidence of EAAT1/GLAST involvement in mechanisms of brain response to alcoholism and present some preliminary data showing that ethanol, at concentrations which may be reached following heavy drinking, can have an effect on the distribution of EAAT1/GLAST in cultured astrocytes; the effect is blocked by baclofen, a GABA-B receptor agonist and a drug potentially useful in the treatment of alcoholism. We argue that more research effort should be focused on EAAT1/GLAST, particularly in relation to alcoholism and drug addiction.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Nilufa Sultana
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mohammed Abul Kashem
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David V Pow
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Vladimir J Balcar
- Laboratory of Neurochemistry, Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
17
|
The transmembrane transporter domain of glutamate transporters is a process tip localizer. Sci Rep 2015; 5:9032. [PMID: 25761899 PMCID: PMC4357008 DOI: 10.1038/srep09032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/10/2015] [Indexed: 01/09/2023] Open
Abstract
Glutamate transporters in the central nervous system remove glutamate released from neurons to terminate the signal. These transporters localize to astrocyte process tips approaching neuronal synapses. The mechanisms underlying the localization of glutamate transporters to these processes, however, are not known. In this study, we demonstrate that the trimeric transmembrane transporter domain fragment of glutamate transporters, lacking both N- and C-terminal cytoplasmic regions, localized to filopodia tips. This is a common property of trimeric transporters including a neutral amino acid transporter ASCT1. Astrocyte specific proteins are not required for the filopodia tip localization. An extracellular loop at the centre of the 4th transmembrane helices, unique for metazoans, is required for the localization. Moreover, a C186S mutation at the 4th transmembrane region of EAAT1, found in episodic ataxia patients, significantly decreased its process tip localization. The transmembrane transporter domain fragments of glutamate transporters also localized to astrocyte process tips in cultured hippocampal slice. These results indicate that the transmembrane transporter domain of glutamate transporters have an additional function as a sorting signal to process tips.
Collapse
|
18
|
Zhang LN, Sun YJ, Wang LX, Gao ZB. Glutamate Transporters/Na(+), K(+)-ATPase Involving in the Neuroprotective Effect as a Potential Regulatory Target of Glutamate Uptake. Mol Neurobiol 2015; 53:1124-1131. [PMID: 25586061 DOI: 10.1007/s12035-014-9071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 12/29/2014] [Indexed: 02/05/2023]
Abstract
The glutamate (Glu) transporters GLAST and GLT-1, as the two most important transporters in brain tissue, transport Glu from the extracellular space into the cell protecting against Glu toxicity. Furthermore, GLAST and GLT-1 are sodium-dependent Glu transporters (GluTs) that rely on sodium and potassium gradients generated principally by Na(+), K(+)-ATPase to generate ion gradients that drive Glu uptake. There is an interaction between Na(+), K(+)-ATPase and GluTs to modulate Glu uptake, and Na(+), K(+)-ATPase α, β or γ subunit can be directly coupled to GluTs, co-localizing with GLAST or GLT-1 in vivo to form a macromolecular complex and operate as a functional unit to regulate glutamatergic neurotransmission. Therefore, GluTs/Na(+), K(+)-ATPase may be involved in the neuroprotective effect as a potential regulatory target of Glu uptake in neurodegenerative diseases induced by Glu-mediated neurotoxicity as the final common pathway.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Yong-Jun Sun
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China
| | - Li-Xue Wang
- Cadre Ward, Capital Medical University Electric Power Teaching Hospital, Compound A1, Taiping Bridge Xili, Beijing, 100073, People's Republic of China
| | - Zi-Bin Gao
- Department of Pharmacy, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhuang, Hebei, 050018, People's Republic of China. .,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, 70 Yuhua East Road, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
19
|
Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage. Neurobiol Dis 2013; 54:206-15. [PMID: 23313319 DOI: 10.1016/j.nbd.2012.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/23/2012] [Accepted: 12/28/2012] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates cellular signaling via desensitization of GPCRs and by direct interaction with intracellular signaling molecules. We recently described that ischemic brain injury decreases cerebral GRK2 levels. Here we studied the effect of astrocyte GRK2-deficiency on neonatal brain damage in vivo. As astrocytes protect neurons by taking up glutamate via plasma-membrane transporters, we also studied the effect of GRK2 on the localization of the GLutamate ASpartate Transporter (GLAST). Brain damage induced by hypoxia-ischemia was significantly reduced in GFAP-GRK2(+/-) mice, which have a 60% reduction in astrocyte GRK2 compared to GFAP-WT littermates. In addition, GRK2-deficient astrocytes have higher plasma-membrane levels of GLAST and an increased capacity to take up glutamate in vitro. In search for the mechanism by which GRK2 regulates GLAST expression, we observed increased GFAP levels in GRK2-deficient astrocytes. GFAP and the cytoskeletal protein ezrin are known regulators of GLAST localization. In line with this evidence, GRK2-deficiency reduced phosphorylation of the GRK2 substrate ezrin and enforced plasma-membrane GLAST association after stimulation with the group I mGluR-agonist DHPG. When ezrin was silenced, the enhanced plasma-membrane GLAST association in DHPG-exposed GRK2-deficient astrocytes was prevented. In conclusion, we identified a novel role of astrocyte GRK2 in regulating plasma-membrane GLAST localization via an ezrin-dependent route. We demonstrate that the 60% reduction in astrocyte GRK2 protein level that is observed in GFAP-GRK2(+/-) mice is sufficient to significantly reduce neonatal ischemic brain damage. These findings underline the critical role of GRK2 regulation in astrocytes for dampening the extent of brain damage after ischemia.
Collapse
|
20
|
Expression of multiple glutamate transporter splice variants in the rodent testis. Asian J Androl 2010; 13:254-65. [PMID: 21170079 DOI: 10.1038/aja.2010.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glutamate is a regulated molecule in the mammalian testis. Extracellular regulation of glutamate in the body is determined largely by the expression of plasmalemmal glutamate transporters. We have examined by PCR, western blotting and immunocytochemistry the expression of a panel of sodium-dependent plasmalemmal glutamate transporters in the rat testis. Proteins examined included: glutamate aspartate transporter (GLAST), glutamate transporter 1 (GLT1), excitatory amino acid carrier 1 (EAAC1), excitatory amino acid transporter 4 (EAAT4) and EAAT5. We demonstrate that many of the glutamate transporters in the testis are alternately spliced. GLAST is present as exon-3- and exon-9-skipping forms. GLT1 was similarly present as the alternately spliced forms GLT1b and GLT1c, whereas the abundant brain form (GLT1a) was detectable only at the mRNA level. EAAT5 was also strongly expressed, whereas EAAC1 and EAAT4 were absent. These patterns of expression were compared with the patterns of endogenous glutamate localization and with patterns of d-aspartate accumulation, as assessed by immunocytochemistry. The presence of multiple glutamate transporters in the testis, including unusually spliced forms, suggests that glutamate homeostasis may be critical in this organ. The apparent presence of many of these transporters in the testis and sperm may indicate a need for glutamate transport by such cells.
Collapse
|
21
|
Garcia TB, Oliveira KRM, do Nascimento JLM, Crespo-López ME, Picanço-Diniz DLW, Mota TC, Herculano AM. Glutamate induces glutathione efflux mediated by glutamate/aspartate transporter in retinal cell cultures. Neurochem Res 2010; 36:412-8. [PMID: 21161593 DOI: 10.1007/s11064-010-0356-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 11/29/2022]
Abstract
This study was undertaken in order to characterize the role of the glutamate/aspartate transporter (GLAST) in the glutathione (GSH) efflux induced by glutamate. Our results demonstrated that retinal cell cultures exhibit two mechanisms of GSH release, one Na(+)-independent and other Na(+)-dependent. Glutamate and aspartate induced GSH efflux only in presence of Na(+). Treatment with PCD (L-trans-Pyrrolidine-2,4-dicarboxylate), a transportable glutamate uptake blocker, increased GSH release indicating that GSH can be carried by glutamate transporters in retinal cell cultures. Added to this, treatment with zinc ion cultures, a recognized inhibitor of GLAST blocked GSH efflux evoked by glutamate. Treatment with NMDA antagonist (MK-801) did not have any effect on the GSH release induced by glutamate. These results suggest that glutamate induces GLAST-mediated release of GSH from retinal cell cultures and this could represent an important mechanism of cellular protection against glutamate toxicity in the CNS.
Collapse
Affiliation(s)
- T B Garcia
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus do Guamá, Av. Augusto Corrêa, 01, Belém, Pará, 66075-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee A, Pow DV. Astrocytes: Glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol 2010; 42:1901-6. [DOI: 10.1016/j.biocel.2010.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/14/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
|
23
|
Cardiac glycosides ouabain and digoxin interfere with the regulation of glutamate transporter GLAST in astrocytes cultured from neonatal rat brain. Neurochem Res 2010; 35:2062-9. [PMID: 20890657 PMCID: PMC3002169 DOI: 10.1007/s11064-010-0274-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2010] [Indexed: 11/15/2022]
Abstract
Glutamate transport (GluT) in brain is mediated chiefly by two transporters GLT and GLAST, both driven by ionic gradients generated by (Na+, K+)-dependent ATPase (Na+/K+-ATPase). GLAST is located in astrocytes and its function is regulated by translocations from cytoplasm to plasma membrane in the presence of GluT substrates. The phenomenon is blocked by a naturally occurring toxin rottlerin. We have recently suggested that rottlerin acts by inhibiting Na+/K+-ATPase. We now report that Na+/K+-ATPase inhibitors digoxin and ouabain also blocked the redistribution of GLAST in cultured astrocytes, however, neither of the compounds caused detectable inhibition of ATPase activity in cell-free astrocyte homogenates (rottlerin inhibited app. 80% of Pi production from ATP in the astrocyte homogenates, IC50 = 25 μM). Therefore, while we may not have established a direct link between GLAST regulation and Na+/K+-ATPase activity we have shown that both ouabain and digoxin can interfere with GluT transport and therefore should be considered potentially neurotoxic.
Collapse
|
24
|
Rottlerin inhibits (Na+, K+)-ATPase activity in brain tissue and alters D-aspartate dependent redistribution of glutamate transporter GLAST in cultured astrocytes. Neurochem Res 2009; 34:1767-74. [PMID: 19495968 DOI: 10.1007/s11064-009-9996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/08/2009] [Indexed: 12/21/2022]
Abstract
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-delta) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-delta mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that D-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation ("metabolic poison"). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without any involvement of PKC-delta-catalysed phosphorylation in the process.
Collapse
|