1
|
Crameri L, Hettiarachchi IT, Hanoun S. Effects of Dynamic Resilience on the Reactivity of Vagally Mediated Heart Rate Variability. Front Psychol 2021; 11:579210. [PMID: 33551903 PMCID: PMC7854534 DOI: 10.3389/fpsyg.2020.579210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Dynamic resilience is a novel concept that aims to quantify how individuals are coping while operating in dynamic and complex task environments. A recently developed dynamic resilience measure, derived through autoregressive modeling, offers an avenue toward dynamic resilience classification that may yield valuable information about working personnel for industries such as defense and elite sport. However, this measure classifies dynamic resilience based upon in-task performance rather than self-regulating cognitive structures; thereby, lacking any supported self-regulating cognitive links to the dynamic resilience framework. Vagally mediated heart rate variability (vmHRV) parameters are potential physiological measures that may offer an opportunity to link self-regulating cognitive structures to dynamic resilience given their supported connection to the self-regulation of stress. This study examines if dynamic resilience classifications reveal significant differences in vagal reactivity between higher, moderate and lower dynamic resilience groups, as participants engage in a dynamic, decision-making task. An amended Three Rs paradigm was implemented that examined vagal reactivity across six concurrent vmHRV reactivity segments consisting of lower and higher task load. Overall, the results supported significant differences between higher and moderate dynamic resilience groups' vagal reactivity but rejected significant differences between the lower dynamic resilience group. Additionally, differences in vagal reactivity across vmHRV reactivity segments within an amended Three Rs paradigm were partially supported. Together, these findings offer support toward linking dynamic resilience to temporal self-regulating cognitive structures that play a role in mediating physiological adaptations during task engagement.
Collapse
Affiliation(s)
- Luke Crameri
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC, Australia
| | | | | |
Collapse
|
2
|
Lea RG, Davis SK, Mahoney B, Qualter P. Does Emotional Intelligence Buffer the Effects of Acute Stress? A Systematic Review. Front Psychol 2019; 10:810. [PMID: 31057453 PMCID: PMC6478766 DOI: 10.3389/fpsyg.2019.00810] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 01/19/2023] Open
Abstract
People with higher levels of emotional intelligence (EI: adaptive emotional traits, skills, and abilities) typically achieve more positive life outcomes, such as psychological wellbeing, educational attainment, and job-related success. Although the underpinning mechanisms linking EI with those outcomes are largely unknown, it has been suggested that EI may work as a "stress buffer." Theoretically, when faced with a stressful situation, emotionally intelligent individuals should show a more adaptive response than those with low EI, such as reduced reactivity (less mood deterioration, less physiological arousal), and faster recovery once the threat has passed. A growing number of studies have begun to investigate that hypothesis in respect to EI measured as both an ability (AEI) and trait (TEI), but results are unclear. To test the "stress-buffering" function of EI, we systematically reviewed experimental studies that explored the relationship between both types of EI and acute stress reactivity or recovery. By searching four databases, we identified 45 eligible studies. Results indicated that EI was only adaptive in certain contexts, and that findings differed according to stressor type, and how EI was measured. In terms of stress reactivity, TEI related to less mood deterioration during sports-based stressors (e.g., competitions), physical discomfort (e.g., dental procedure), and cognitive stressors (e.g., memory tasks), but did not appear as helpful in other contexts (e.g., public speaking). Furthermore, effects of TEI on physiological stress responses, such as heart rate, were inconsistent. Effects of AEI on subjective and objective stress reactivity were often non-significant, with high levels detrimental in some cases. However, data suggest that both higher AEI and TEI relate to faster recovery from acute stress. In conclusion, results provide mixed support for the stress-buffering effect of EI. Limitations and quality of studies are also discussed. Findings could have implications for EI training programmes.
Collapse
Affiliation(s)
- Rosanna G Lea
- School of Psychology, College of Business, Psychology and Sport, University of Worcester, Worcester, United Kingdom
| | - Sarah K Davis
- School of Psychology, College of Business, Psychology and Sport, University of Worcester, Worcester, United Kingdom
| | - Bérénice Mahoney
- School of Psychology, College of Business, Psychology and Sport, University of Worcester, Worcester, United Kingdom
| | - Pamela Qualter
- School of Environment, Education and Development, Institute of Education, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VDF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854:272-281. [PMID: 30974105 DOI: 10.1016/j.ejphar.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Diverse disturbances in immune-endocrine circuitries are involved in the development and aggravation of several chronic metabolic diseases (CMDs), including obesity, diabetes, and metabolic syndrome. The chronic inflammatory syndrome observed in CMDs culminates in dysregulated immune responses with low microbial killing efficiency, by means low host innate immune response, and loss of ability to eliminate the pathogens, which results in a high prevalence of infectious diseases, including pneumonia, tuberculosis, and sepsis. Herein, we review evidence pointing out PPARγ as a putative player in immune-endocrine disturbances related to increased risk of infections in CMDs. Cumulated evidence indicates that PPARγ activation modulates host cells to control inflammation during CMDs because of PPARγ agonists have anti-inflammatory and pro-resolutive properties, increasing host ability to eliminate pathogen, modulating hormone production, and restoring glucose and lipid homeostasis. As such, we propose PPARγ as a putative therapeutic adjuvant for patients with CMDs to favor a better infection control.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Unirio, Brazil.
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET UNR), 2000, Rosario, Argentina.
| | - Vinicius de Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Gulyaeva NV. The Neurochemistry of Stress: the Chemistry of the Stress Response and Stress Vulnerability. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Carnevali L, Koenig J, Sgoifo A, Ottaviani C. Autonomic and Brain Morphological Predictors of Stress Resilience. Front Neurosci 2018; 12:228. [PMID: 29681793 PMCID: PMC5897537 DOI: 10.3389/fnins.2018.00228] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Stressful life events are an important cause of psychopathology. Humans exposed to aversive or stressful experiences show considerable inter-individual heterogeneity in their responses. However, the majority does not develop stress-related psychiatric disorders. The dynamic processes encompassing positive and functional adaptation in the face of significant adversity have been broadly defined as resilience. Traditionally, the assessment of resilience has been confined to self-report measures, both within the general community and putative high-risk populations. Although this approach has value, it is highly susceptible to subjective bias and may not capture the dynamic nature of resilience, as underlying construct. Recognizing the obvious benefits of more objective measures of resilience, research in the field has just started investigating the predictive value of several potential biological markers. This review provides an overview of theoretical views and empirical evidence suggesting that individual differences in heart rate variability (HRV), a surrogate index of resting cardiac vagal outflow, may underlie different levels of resilience toward the development of stress-related psychiatric disorders. Following this line of thought, recent studies describing associations between regional brain morphometric characteristics and resting state vagally-mediated HRV are summarized. Existing studies suggest that the structural morphology of the anterior cingulated cortex (ACC), particularly its cortical thickness, is implicated in the expression of individual differences in HRV. These findings are discussed in light of emerging structural neuroimaging research, linking morphological characteristics of the ACC to psychological traits ascribed to a high-resilient profile and abnormal structural integrity of the ACC to the psychophysiological expression of stress-related mental health consequences. We conclude that a multidisciplinary approach integrating brain structural imaging with HRV monitoring could offer novel perspectives about brain-body pathways in resilience and adaptation to psychological stress.
Collapse
Affiliation(s)
- Luca Carnevali
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy.,Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Julian Koenig
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Ottaviani
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Sengupta T, Das R, Chattarji S. Chronic but not acute immobilization stress stably enhances hippocampal CA1 metabotropic glutamate receptor dependent Long-Term Depression. Neurosci Lett 2016; 633:101-105. [PMID: 27663134 DOI: 10.1016/j.neulet.2016.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
Acute stress has been shown to facilitate but not increase metabotropic glutamate receptor (mGluR) mediated Long-Term Depression (LTD) in the hippocampus. However, the effect of chronic stress on mGluR dependent LTD has not been investigated. Moreover, whether stress leads to a transient modification LTD threshold or a more stable change in synaptic plasticity needs to be addressed. In the present study, we have explored the effects of both a ten-day long and a single day immobilization stress protocol on mGluR-LTD at the CA3:CA1synapse in the hippocampus of adult male Sprague-Dawley rats, a day after applying stress. Bath application of the selective group 1 mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) promoted robust LTD in hippocampal slices from control (i.e. un-stressed) animals. Administration of immobility stress for two hours per day for ten days significantly elevated this LTD to a level almost twice that of control, when observed 24h following the last stress event. Acute stress i.e. a single day of two hours of immobilization, however, failed to significantly enhance LTD, 24h later. These results demonstrate for the first time, that repeated exposure to stress, but not a single stress event, is required to bring about a stable alteration in mGluR mediated synaptic plasticity.
Collapse
Affiliation(s)
- Tathagata Sengupta
- Department of Electrophysiology, Biolab, TCG Lifesciences Pvt. Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Kolkata, 700091, India.
| | - Rishi Das
- Department of Electrophysiology, Biolab, TCG Lifesciences Pvt. Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-V, Salt Lake Electronic Complex, Kolkata, 700091, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| |
Collapse
|
7
|
Mazurak N, Sauer H, Weimer K, Dammann D, Zipfel S, Horing B, Muth ER, Teufel M, Enck P, Mack I. Effect of a weight reduction program on baseline and stress-induced heart rate variability in children with obesity. Obesity (Silver Spring) 2016; 24:439-45. [PMID: 26704529 DOI: 10.1002/oby.21355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Autonomic dysregulation is a well-established feature in adults with obesity but not in children. Since this dysregulation could contribute to weight dynamics, this study aimed to compare autonomic regulation in children with obesity and normal-weight peers and to track autonomic status during weight reduction. METHODS Sixty children with obesity and 27 age- and sex-matched normal-weight healthy participants were included. Heart rate variability (HRV) was assessed at baseline and during a mental stress test and a subsequent recovery period. Children with obesity were investigated both upon admission and discharge. RESULTS Upon admission, no significant differences in HRV parameters were found for normal-weight participants and those with obesity. Inpatient treatment led to significant changes in HRV with increase in general variability (standard deviation of the normal-to-normal interval (SDNN), P < 0.001) as well as of parasympathetic regulation (root mean square successive difference (RMSSD) and high frequency power (logHF), P < 0.01). Children with obesity had sympathetic activation similar to normal-weight controls during mental stress with subsequent return to baseline values, and weight loss did not affect this profile. CONCLUSIONS A weight reduction program induced a change in autonomic activity in children with obesity toward parasympathetic dominance but had no influence on autonomic nervous system reactivity during stress conditions.
Collapse
Affiliation(s)
- Nazar Mazurak
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
- SymbioGruppe GmbH, Herborn, Germany
| | - Helene Sauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Dirk Dammann
- Fachkliniken Wangen I.A., Children Rehabilitation Hospital for Respiratory Diseases, Allergies and Psychosomatics, Wangen I.A., Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Björn Horing
- Department of Psychology, Clemson University, Clemson, South Carolina, USA
| | - Eric R Muth
- Department of Psychology, Clemson University, Clemson, South Carolina, USA
| | - Martin Teufel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| |
Collapse
|
8
|
Labouesse MA, Langhans W, Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1-R12. [DOI: 10.1152/ajpregu.00087.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically associated with primary defects in CNS development. These peripheral changes include excessive accumulation of adipose tissue and increased body weight, impaired glycemic regulation and insulin resistance, altered myeloid lineage development, increased gut permeability, hyperpurinergia, and changes in microbiota composition. Experimental work in animal models further suggests that at least some of these peripheral abnormalities could directly contribute to CNS dysfunctions, so that normalization of peripheral pathologies could lead to an amelioration of behavioral deficits. Hence, seemingly unrelated central and peripheral effects of prenatal infection could represent interrelated pathological entities that emerge in response to a common developmental stressor. Targeting peripheral abnormalities may thus represent a valuable strategy to improve the wide spectrum of behavioral abnormalities that can emerge in subjects with prenatal infection histories.
Collapse
Affiliation(s)
| | | | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Switzerland
| |
Collapse
|
9
|
van Campen JS, Jansen FE, de Graan PNE, Braun KPJ, Joels M. Early life stress in epilepsy: a seizure precipitant and risk factor for epileptogenesis. Epilepsy Behav 2014; 38:160-71. [PMID: 24144618 DOI: 10.1016/j.yebeh.2013.09.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Stress can influence epilepsy in multiple ways. A relation between stress and seizures is often experienced by patients with epilepsy. Numerous questionnaire and diary studies have shown that stress is the most often reported seizure-precipitating factor in epilepsy. Acute stress can provoke epileptic seizures, and chronic stress increases seizure frequency. In addition to its effects on seizure susceptibility in patients with epilepsy, stress might also increase the risk of epilepsy development, especially when the stressors are severe, prolonged, or experienced early in life. Although the latter has not been fully resolved in humans, various preclinical epilepsy models have shown increased seizure susceptibility in naïve rodents after prenatal and early postnatal stress exposure. In the current review, we first provide an overview of the effects of stress on the brain. Thereafter, we discuss human as well as preclinical studies evaluating the relation between stress, epileptic seizures, and epileptogenesis, focusing on the epileptogenic effects of early life stress. Increased knowledge on the interaction between early life stress, seizures, and epileptogenesis could improve patient care and provide a basis for new treatment strategies for epilepsy.
Collapse
Affiliation(s)
- Jolien S van Campen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Pierre N E de Graan
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Marian Joels
- Department of Neuroscience & Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
10
|
Velázquez-Moctezuma J, Domínguez-Salazar E, Gómez-González B. Beyond the borders: the gates and fences of neuroimmune interaction. Front Integr Neurosci 2014; 8:26. [PMID: 24659958 PMCID: PMC3952191 DOI: 10.3389/fnint.2014.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City, Mexico
| | - Emilio Domínguez-Salazar
- Area of Neurosciences, Biology of Reproduction Department, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City, Mexico
| | - Beatriz Gómez-González
- Area of Neurosciences, Biology of Reproduction Department, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa Mexico City, Mexico
| |
Collapse
|
11
|
Sauer H, Krumm A, Weimer K, Horing B, Mazurak N, Gulewitsch MD, Hellmond F, Dammann D, Binder W, Linse P, Zipfel S, Ehehalt S, Binder G, Demircioglu A, Muth ER, Enck P, Mack I. PreDictor Research in Obesity during Medical care - weight Loss in children and adolescents during an INpatient rehabilitation: rationale and design of the DROMLIN study. J Eat Disord 2014; 2:7. [PMID: 24764531 PMCID: PMC3984741 DOI: 10.1186/2050-2974-2-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity in adults and children is increasing worldwide at alarming rates. Obese children and adolescents are likely to become obese adults with increased risk of a number of comorbidities. In addition to preventing the development of obesity at young age, it is necessary to individualize the therapy of already obese children and adolescents in order to increase the likelihood of weight loss and maintenance. Therefore, the aim of this study is to identify predictors which play a significant role in successful weight loss and weight loss maintenance in children and adolescents. METHODS/DESIGN Over a one year period, 60 obese children and adolescents between 9 to 17 years of age shall be recruited at an inpatient children rehabilitation facility in Germany. They will be investigated twice within a few days following admission and prior to discharge. The study will be an integrated component of an established inpatient weight-loss and in part psychosomatic therapy. The collected data can be grouped into four clusters: 1) demographic, sociometric and psychometric data, 2) objective and subjective parameters of body condition, 3) autonomic nervous system regulated functions and 4) objective and subjective parameters for eating behavior. Primary outcome is the change of the body mass index standard deviation score (BMI-SDS). In order to evaluate the data appropriately, all examinations will be also conducted in a normal-weight reference group, matched for age and gender. DISCUSSION For some of the collected parameters the time span between measures may be too short. Therefore, a 6 months, 1 year and 2 year follow-up will be performed for evaluating the different predictors and their influence in regard to a successful intervention. Further middle- and long-term follow-up studies are planned. TRIAL REGISTRATION The study protocol was approved by the Ethics Committee of the University Hospital Tübingen, Germany. This study is registered at the German Clinical Trials Register (DRKS) with the clinical trial number DRKS00005122.
Collapse
Affiliation(s)
- Helene Sauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Anna Krumm
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Katja Weimer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Björn Horing
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Nazar Mazurak
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Marco D Gulewitsch
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Frank Hellmond
- Fachkliniken Wangen i.A., Children Rehabilitation Hospital for Respiratory Diseases, Allergies and Psychosomatics, Wangen i.A., Germany
| | - Dirk Dammann
- Fachkliniken Wangen i.A., Children Rehabilitation Hospital for Respiratory Diseases, Allergies and Psychosomatics, Wangen i.A., Germany
| | - Walter Binder
- Fachkliniken Wangen i.A., Children Rehabilitation Hospital for Respiratory Diseases, Allergies and Psychosomatics, Wangen i.A., Germany
| | - Peter Linse
- Fachkliniken Wangen i.A., Children Rehabilitation Hospital for Respiratory Diseases, Allergies and Psychosomatics, Wangen i.A., Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Stefan Ehehalt
- Public Health Department of Stuttgart, Department of Pediatrics, Dental Health Care, Health Promotion and Social Services, Stuttgart, Germany
| | - Gerhard Binder
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Tübingen, Germany
| | - Aydin Demircioglu
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Eric R Muth
- Department of Psychology, Clemson University, Clemson, South Carolina, USA
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Medical Hospital, Frondsbergstrasse 23, 72070 Tübingen, Germany
| |
Collapse
|
12
|
Widespread reductions of white matter integrity in patients with long-term remission of Cushing's disease. NEUROIMAGE-CLINICAL 2014; 4:659-67. [PMID: 24936417 PMCID: PMC4053612 DOI: 10.1016/j.nicl.2014.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/09/2014] [Accepted: 01/31/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hypercortisolism leads to various physical, psychological and cognitive symptoms, which may partly persist after the treatment of Cushing's disease. The aim of the present study was to investigate abnormalities in white matter integrity in patients with long-term remission of Cushing's disease, and their relation with psychological symptoms, cognitive impairment and clinical characteristics. METHODS In patients with long-term remission of Cushing's disease (n = 22) and matched healthy controls (n = 22) we examined fractional anisotropy (FA) values of white matter in a region-of-interest (ROI; bilateral cingulate cingulum, bilateral hippocampal cingulum, bilateral uncinate fasciculus and corpus callosum) and the whole brain, using 3 T diffusion tensor imaging (DTI) and a tract-based spatial statistics (TBSS) approach. Psychological and cognitive functioning were assessed with validated questionnaires and clinical severity was assessed using the Cushing's syndrome Severity Index. RESULTS The ROI analysis showed FA reductions in all of the hypothesized regions, with the exception of the bilateral hippocampal cingulum, in patients when compared to controls. The exploratory whole brain analysis showed multiple regions with lower FA values throughout the brain. Patients reported more apathy (p = .003) and more depressive symptoms (p < .001), whereas depression symptom severity in the patient group was negatively associated with FA in the left uncinate fasciculus (p < 0.05). Post-hoc analyses showed increased radial and mean diffusivity in the patient group. CONCLUSION Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to the severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism.
Collapse
|
13
|
Kumar P, Berghorst LH, Nickerson LD, Dutra SJ, Goer FK, Greve DN, Pizzagalli DA. Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience 2014; 266:1-12. [PMID: 24508744 DOI: 10.1016/j.neuroscience.2014.01.058] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/26/2023]
Abstract
Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/'wanting' during the anticipatory phase but reduce reward responsiveness/'liking' during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption)×Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this prevalent disorder.
Collapse
Affiliation(s)
- P Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, MA, USA.
| | - L H Berghorst
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - L D Nickerson
- Department of Psychiatry, Harvard Medical School, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - S J Dutra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - F K Goer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - D N Greve
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - D A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
14
|
van der Werff SJA, van den Berg SM, Pannekoek JN, Elzinga BM, van der Wee NJA. Neuroimaging resilience to stress: a review. Front Behav Neurosci 2013; 7:39. [PMID: 23675330 PMCID: PMC3646289 DOI: 10.3389/fnbeh.2013.00039] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/18/2013] [Indexed: 12/28/2022] Open
Abstract
There is a high degree of intra-individual variation in how individuals respond to stress. This becomes evident when exploring the development of posttraumatic symptoms or stress-related disorders after exposure to trauma. Whether or not an individual develops posttraumatic symptoms after experiencing a traumatic event is partly dependent on a person's resilience. Resilience can be broadly defined as the dynamic process encompassing positive adaptation within the context of significant adversity. Even though research into the neurobiological basis of resilience is still in its early stages, these insights can have important implications for the prevention and treatment of stress-related disorders. Neuroimaging studies contribute to our knowledge of intra-individual variability in resilience and the development of posttraumatic symptoms or other stress-related disorders. This review provides an overview of neuroimaging findings related to resilience. Structural, resting-state, and task-related neuroimaging results associated with resilience are discussed. There are a limited number of studies available and neuroimaging research of resilience is still in its infancy. The available studies point at brain circuitries involved in stress and emotion regulation, with more efficient processing and regulation associated with resilience.
Collapse
Affiliation(s)
- S J A van der Werff
- Department of Psychiatry, Leiden University Medical Center Leiden, Netherlands ; Leiden Institute for Brain and Cognition Leiden, Netherlands
| | | | | | | | | |
Collapse
|
15
|
Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One 2013; 8:e56871. [PMID: 23451101 PMCID: PMC3579928 DOI: 10.1371/journal.pone.0056871] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Disturbances of the excitation/inhibition (E/I) balance in the brain were recently suggested as potential factors underlying disorders like autism and schizophrenia resulting in associated behavioral alterations including changes in social and emotional behavior as well as abnormal aggression. Neuronal cell adhesion molecules (nCAMs) and mutations in these genes were found to be strongly implicated in the pathophysiology of these disorders. Neuroligin2 (nlgn2) is a postsynaptic cell adhesion molecule, which is predominantly expressed at inhibitory synapses and required for synapse specification and stabilization. Changes in the expression of nlgn2 were shown to result in alterations of social behavior as well as altered inhibitory synaptic transmission, hence modifying the E/I balance. In our study, we focused on the role of nlgn2 in the dorsal hippocampus in the regulation of emotional and social behaviors. To this purpose, we injected an AAV construct overexpressing nlgn2 in the hippocampus of rats and investigated the effects on behavior and on markers for the E/I ratio. We could show an increase in GAD65, a GABA-synthesizing protein in neuronal terminals, and furthermore, reduced exploration of novel stimuli and less offensive behavior. Our data suggest nlgn2 in the hippocampus to be strongly implicated in maintaining the E/I balance in the brain and thereby modulating social and emotional behavior.
Collapse
|
16
|
Aller MA, Arias JI, Prieto I, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model 2013; 10:6. [PMID: 23374964 PMCID: PMC3577641 DOI: 10.1186/1742-4682-10-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient's injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose-Ignacio Arias
- General and Digestive Surgery Unit, Monte Naranco Hospital, Oviedo, Asturias, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz Hospital, Autonomous University, Madrid, Spain
| | - Carlos Gilsanz
- General and Digestive Surgery Unit, Sudeste University Hospital, Arganda del Rey, Madrid, Spain
| | - Ana Arias
- Department of Medicine, Puerta de Hierro Hospital, Autonomous University, Madrid, Spain
| | - Heping Yang
- Division of Gastroenterology and Liver Disease, USC Research Centre for Liver Diseases, Los Angeles, CA, USA
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron 2012; 73:219-34. [PMID: 22284178 DOI: 10.1016/j.neuron.2012.01.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/12/2022]
Abstract
The brain and body respond to potential and actual stressful events by activating hormonal and neural mediators and modifying behaviors to adapt. Such responses help maintain physiological stability ("allostasis"). When behavioral or physiological stressors are frequent and/or severe, allostatic responses can become dysregulated and maladaptive ("allostatic load"). Allostatic load may alter brain networks both functionally and structurally. As a result, the brain's responses to continued/subsequent stressors are abnormal, and behavior and systemic physiology are altered in ways that can, in a vicious cycle, lead to further allostatic load. Migraine patients are continually exposed to such stressors, resulting in changes to central and peripheral physiology and function. Here we review how changes in brain states that occur as a result of repeated migraines may be explained by a maladaptive feedforward allostatic cascade model and how understanding migraine within the context of allostatic load model suggests alternative treatments for this often-debilitating disease.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, McLean, Massachusetts General, and Children's Hospitals, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
18
|
Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7:e32969. [PMID: 22412961 PMCID: PMC3296759 DOI: 10.1371/journal.pone.0032969] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 12/27/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.
Collapse
|