1
|
Chen Y, Nie Q, Song T, Zou X, Li Q, Zhang P. Integrated Proteomics and Lipidomics Analysis of Hippocampus to Reveal the Metabolic Landscape of Epilepsy. ACS OMEGA 2025; 10:9351-9367. [PMID: 40092809 PMCID: PMC11904687 DOI: 10.1021/acsomega.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
Collapse
Affiliation(s)
- Yinyu Chen
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qianyun Nie
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
- Department
of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China
| | - Tao Song
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Xing Zou
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qifu Li
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Peng Zhang
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| |
Collapse
|
2
|
Glazyrin YE, Veprintsev DV, Timechko EE, Minic Z, Zamay TN, Dmitrenko DV, Berezovski MV, Kichkailo AS. Comparative Proteomic Profiling of Blood Plasma Revealed Marker Proteins Involved in Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:7935. [PMID: 39063177 PMCID: PMC11276668 DOI: 10.3390/ijms25147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Temporal lobe epilepsy has various origins, involving or not involving structural changes in brain tissue. The mechanisms of epileptogenesis are associated with cell regulation and signaling disruptions expressed in varied levels of proteins. The blood plasma proteomic profiling of temporal lobe epilepsy patients (including magnetic resonance imaging (MRI)-positive and MRI-negative ones) and healthy volunteers using mass spectrometry and label-free quantification revealed a list of differently expressed proteins. Several apolipoproteins (APOA1, APOD, and APOA4), serpin protease inhibitors (SERPINA3, SERPINF1, etc.), complement components (C9, C8, and C1R), and a total of 42 proteins were found to be significantly upregulated in the temporal lobe epilepsy group. A classification analysis of these proteins according to their biological functions, as well as a review of the published sources, disclosed the predominant involvement of the processes mostly affected during epilepsy such as neuroinflammation, intracellular signaling, lipid metabolism, and oxidative stress. The presence of several proteins related to the corresponding compensatory mechanisms has been noted. After further validation, the newly identified temporal lobe epilepsy biomarker candidates may be used as epilepsy diagnostic tools, in addition to other less specific methods such as electroencephalography or MRI.
Collapse
Affiliation(s)
- Yury E. Glazyrin
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Veprintsev
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Tatiana N. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia; (E.E.T.); (D.V.D.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada; (Z.M.); (M.V.B.)
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Science”, Akademgorodok 50, 660036 Krasnoyarsk, Russia; (D.V.V.); (T.N.Z.); (A.S.K.)
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, 660022 Krasnoyarsk, Russia
| |
Collapse
|
3
|
Phochantachinda S, Chantong B, Reamtong O, Chatchaisak D. Protein profiling and assessment of amyloid beta levels in plasma in canine refractory epilepsy. Front Vet Sci 2023; 10:1258244. [PMID: 38192726 PMCID: PMC10772147 DOI: 10.3389/fvets.2023.1258244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction The relationship between epilepsy and cognitive dysfunction has been investigated in canines, and memory impairment was prevalent in dogs with epilepsy. Additionally, canines with epilepsy have greater amyloid-β (Aβ) accumulation and neuronal degeneration than healthy controls. The present study investigated plasma Aβ42 levels and performed proteomic profiling in dogs with refractory epilepsy and healthy dogs. Methods In total, eight dogs, including four healthy dogs and four dogs with epilepsy, were included in the study. Blood samples were collected to analyze Aβ42 levels and perform proteomic profiling. Changes in the plasma proteomic profiles of dogs were determined by nano liquid chromatography tandem mass spectrometry. Results and discussion The plasma Aβ42 level was significantly higher in dogs with epilepsy (99 pg/mL) than in healthy dogs (5.9 pg/mL). In total, 155 proteins were identified, and of these, the expression of 40 proteins was altered in epilepsy. Among these proteins, which are linked to neurodegenerative diseases, 10 (25%) were downregulated in dogs with epilepsy, whereas 12 (30%) were upregulated. The expression of the acute phase proteins haptoglobin and α2-macroglobulin significantly differed between the groups. Complement factor H and ceruloplasmin were only detected in epilepsy dogs, suggesting that neuroinflammation plays a role in epileptic seizures. Gelsolin, which is involved in cellular processes and cytoskeletal organization, was only detected in healthy dogs. Gene Ontology annotation revealed that epilepsy can potentially interfere with biological processes, including cellular processes, localization, and responses to stimuli. Seizures compromised key molecular functions, including catalytic activity, molecular function regulation, and binding. Defense/immunity proteins were most significantly modified during the development of epilepsy. In Kyoto Encyclopedia of Genes and Genomes pathway analysis, complement and coagulation cascades were the most relevant signaling pathways affected by seizures. The findings suggested that haptoglobin, ceruloplasmin, α2-macroglobulin, complement factor H, and gelsolin play roles in canine epilepsy and Aβ levels based on proteomic profiling. These proteins could represent diagnostic biomarkers that, after clinical validation, could be used in veterinary practice as well as proteins relevant to disease response pathways. To determine the precise mechanisms underlying these relationships and their implications in canine epilepsy, additional research is required.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Suprewicz Ł, Skłodowski K, Walewska A, Deptuła P, Sadzyńska A, Eljaszewicz A, Moniuszko M, Janmey PA, Bucki R. Plasma Gelsolin Enhances Phagocytosis of Candida auris by Human Neutrophils through Scavenger Receptor Class B. Microbiol Spectr 2023; 11:e0408222. [PMID: 36802172 PMCID: PMC10101141 DOI: 10.1128/spectrum.04082-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
In addition to its role as an actin-depolymerizing factor in the blood, plasma gelsolin (pGSN) binds bacterial molecules and stimulates the phagocytosis of bacteria by macrophages. Here, using an in vitro system, we assessed whether pGSN could also stimulate phagocytosis of the fungal pathogen Candida auris by human neutrophils. The extraordinary ability of C. auris to evade immune responses makes it particularly challenging to eradicate in immunocompromised patients. We demonstrate that pGSN significantly enhances C. auris uptake and intracellular killing. Stimulation of phagocytosis was accompanied by decreased neutrophil extracellular trap (NET) formation and reduced secretion of proinflammatory cytokines. Gene expression studies revealed pGSN-dependent upregulation of scavenger receptor class B (SR-B). Inhibition of SR-B using sulfosuccinimidyl oleate (SSO) and block lipid transport-1 (BLT-1) decreased the ability of pGSN to enhance phagocytosis, indicating that pGSN potentiates the immune response through an SR-B-dependent pathway. These results suggest that the response of the host's immune system during C. auris infection may be enhanced by the administration of recombinant pGSN. IMPORTANCE The incidence of life-threatening multidrug-resistant Candida auris infections is rapidly growing, causing substantial economic costs due to outbreaks in hospital wards. Primary and secondary immunodeficiencies in susceptible individuals, such as those with leukemia, solid organ transplants, diabetes, and ongoing chemotherapy, often correlate with decreased plasma gelsolin concentration (hypogelsolinemia) and impairment of innate immune responses due to severe leukopenia. Immunocompromised patients are predisposed to superficial and invasive fungal infections. Morbidity caused by C. auris among immunocompromised patients can be as great as 60%. In the era of ever-growing fungal resistance in an aging society, it is critical to seek novel immunotherapies that may help combat these infections. The results reported here suggest the possibility of using pGSN as an immunomodulator of the immune response by neutrophils during C. auris infection.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Alicja Sadzyńska
- Prof. Edward F. Szczepanik State Vocational University—Suwałki, Suwałki, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, Białystok, Poland
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Bucki
- Department of Medical Microbiology and Biomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
5
|
Suprewicz Ł, Tran KA, Piktel E, Fiedoruk K, Janmey PA, Galie PA, Bucki R. Recombinant human plasma gelsolin reverses increased permeability of the blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus. J Neuroinflammation 2022; 19:282. [PMID: 36434734 PMCID: PMC9694610 DOI: 10.1186/s12974-022-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood-brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). MATERIALS AND METHODS Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. RESULTS pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). CONCLUSION Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland.
| |
Collapse
|
6
|
Williams ME, Naudé PJW, van der Westhuizen FH. Proteomics and metabolomics of HIV-associated neurocognitive disorders: A systematic review. J Neurochem 2021; 157:429-449. [PMID: 33421125 DOI: 10.1111/jnc.15295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/01/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) are common features of the effect of human immunodeficiency virus (HIV)-1 within the central nervous system (CNS). The underlying neuropathophysiology of HAND is incompletely known. Furthermore, there are no markers to effectively predict or stratify the risk of HAND. Recent advancements in the fields of proteomics and metabolomics have shown promise in addressing these concerns, however, it is not clear if these approaches may provide new insight into pathways and markers related to HAND. We therefore conducted a systematic review of studies using proteomic and/or metabolomic approaches in the aim of identifying pathways or markers associated with neurocognitive impairment in people living with HIV (PLWH). Thirteen studies were eligible, including 11 proteomic and 2 metabolomic investigations of HIV-positive clinical samples (cerebrospinal fluid (CSF), brain tissue, and serum). Across varying profiling techniques and sample types, the majority of studies found an association of markers with neurocognitive function in PLWH. These included metabolic marker myo-inositol and proteomic markers superoxide dismutase, gelsolin, afamin, sphingomyelin, and ceramide. Certain markers were found to be dysregulated across various sample types. Afamin and gelsolin overlapped in studies of blood and CSF and sphingomyelin and ceramide overlapped in studies of CSF and brain tissue. The association of these markers with neurocognitive functioning may indicate the activity of certain pathways, potentially those related to the underlying neuropathophysiology of HAND.
Collapse
Affiliation(s)
- Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
7
|
Sudakov NP, Klimenkov IV, Byvaltsev VA, Nikiforov SB, Konstantinov YM. Extracellular Actin in Health and Disease. BIOCHEMISTRY (MOSCOW) 2017; 82:1-12. [PMID: 28320282 DOI: 10.1134/s0006297917010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review considers the functions of extracellular actin - cell surface bound, associated with extracellular matrix, or freely circulating. The role of this protein in different pathological processes is analyzed: its toxic effects and involvement in autoimmune diseases as an autoantigen. The extracellular actin clearance system and its role in protection against the negative effects of actin are characterized. Levels of free-circulating actin, anti-actin immunoglobulins, and components of the actin clearance system as prognostic biomarkers for different diseases are reviewed. Experimental approaches to protection against excessive amounts of free-circulating F-actin are discussed.
Collapse
Affiliation(s)
- N P Sudakov
- Irkutsk Surgery and Traumatology Research Center, Irkutsk, 664003, Russia.
| | | | | | | | | |
Collapse
|
8
|
dl-3-n-Butylphthalide attenuation of methamphetamine-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Life Sci 2016; 165:16-20. [DOI: 10.1016/j.lfs.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
|
9
|
Neely BA, Soper JL, Gulland FMD, Bell PD, Kindy M, Arthur JM, Janech MG. Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration. Proteomics 2015; 15:4051-63. [DOI: 10.1002/pmic.201500167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/10/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Benjamin A. Neely
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | | | | | - P. Darwin Bell
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | - Mark Kindy
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
- Department of Regenerative Medicine and Cell Biology; Medical University of South Carolina; Charleston SC USA
- Department of Veterans’ Affairs; Research Service; Charleston SC USA
| | - John M. Arthur
- Department of Internal Medicine; Division of Nephrology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Michael G. Janech
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
10
|
Martin-Vaquero P, da Costa RC, Allen MJ, Moore SA, Keirsey JK, Green KB. Proteomic analysis of cerebrospinal fluid in canine cervical spondylomyelopathy. Spine (Phila Pa 1976) 2015; 40:601-12. [PMID: 26030213 PMCID: PMC4451599 DOI: 10.1097/brs.0000000000000831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Prospective study. OBJECTIVE To identify proteins with differential expression in the cerebrospinal fluid (CSF) from 15 clinically normal (control) dogs and 15 dogs with cervical spondylomyelopathy (CSM). SUMMARY OF BACKGROUND DATA Canine CSM is a spontaneous, chronic, compressive cervical myelopathy similar to human cervical spondylotic myelopathy. There is a limited knowledge of the molecular mechanisms underlying these conditions. Differentially expressed CSF proteins may contribute with novel information about the disease pathogenesis in both dogs and humans. METHODS Protein separation was performed with 2-dimensional electrophoresis. A Student t test was used to detect significant differences between groups (P < 0.05). Three comparisons were made: (1) control versus CSM-affected dogs, (2) control versus non-corticosteroid-treated CSM-affected dogs, and (3) non-corticosteroid-treated CSM-affected versus corticosteroid-treated CSM-affected dogs. Protein spots exhibiting at least a statistically significant 1.25-fold change between groups were selected for subsequent identification with capillary-liquid chromatography tandem mass spectrometry. RESULTS A total of 96 spots had a significant average change of at least 1.25-fold in 1 of the 3 comparisons. Compared with the CSF of control dogs, CSM-affected dogs demonstrated increased CSF expression of 8 proteins including vitamin D-binding protein, gelsolin, creatine kinase B-type, angiotensinogen, α-2-HS-glycoprotein, SPARC (secreted protein, acidic, rich in cysteine), calsyntenin-1, and complement C3, and decreased expression of pigment epithelium-derived factor, prostaglandin-H2 D-isomerase, apolipoprotein E, and clusterin. In the CSF of CSM-affected dogs, corticosteroid treatment increased the expression of haptoglobin, transthyretin isoform 2, cystatin C-like, apolipoprotein E, and clusterin, and decreased the expression of angiotensinogen, α-2-HS-glycoprotein, and gelsolin. CONCLUSION Many of the differentially expressed proteins are associated with damaged neural tissue, bone turnover, and/or compromised blood-spinal cord barrier. The knowledge of the protein changes that occur in CSM and upon corticosteroid treatment of CSM-affected patients will aid in further understanding the pathomechanisms underlying this disease. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Paula Martin-Vaquero
- Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, Columbus, OH
- Dr. Martin-Vaquero’s current address is Centro Médico Veterinario Delicias, Calle Delicias 35, C.P. 28045, Madrid, Spain
| | - Ronaldo C. da Costa
- Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, Columbus, OH
| | - Matthew J. Allen
- Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, Columbus, OH
| | - Sarah A. Moore
- Department of Veterinary Clinical Sciences, The Ohio State University, College of Veterinary Medicine, Columbus, OH
| | - Jeremy K. Keirsey
- Mass Spectrometry and Proteomics Facility, The Ohio State University, College of Medicine, Department of Molecular and Cellular Biochemistry, Columbus, OH
| | | |
Collapse
|
11
|
Altered Cerebrospinal Fluid Concentrations of TGFβ1 in Patients with Drug-Resistant Epilepsy. Neurochem Res 2014; 39:2211-7. [DOI: 10.1007/s11064-014-1422-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/24/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
12
|
Abstract
Few would experience greater benefit from the development of biomarkers than those who suffer from epilepsy. Both the timing of individual seizures and the overall course of the disease are highly unpredictable, and the associated morbidity is considerable. Thus, there is an urgent need to develop biomarkers that can predict the progression of epilepsy and treatment response. Doing so may also shed light on the mechanisms of epileptogenesis and pharmacoresistance, which remain elusive despite decades of study. However, recent advances suggest the possible identification of circulating epilepsy biomarkers – accessible in blood, cerebrospinal fluid or urine. In this review, we focus on advances in several areas: neuroimmunology and inflammation; neurological viral infection; exemplary pediatric syndromes; and the genetics of pharmacoresistance, as relevant to epilepsy. These are fertile areas of study with great potential to yield accessible epilepsy biomarkers.
Collapse
Affiliation(s)
- Manu Hegde
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, 521 Parnassus Avenue C-440, San Francisco, CA 94143-0138, USA
- Epilepsy Center of Excellence, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 127E, San Francisco, CA 94121, USA
| | - Daniel H Lowenstein
- UCSF Epilepsy Center, Department of Neurology, University of California, San Francisco, 521 Parnassus Avenue C-440, San Francisco, CA 94143-0138, USA
| |
Collapse
|
13
|
Liu H, Liu J, Liang S, Xiong H. Plasma gelsolin protects HIV-1 gp120-induced neuronal injury via voltage-gated K+ channel Kv2.1. Mol Cell Neurosci 2013. [DOI: 10.1016/j.mcn.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
14
|
Down-Regulation of CRMP-1 in Patients with Epilepsy and a Rat Model. Neurochem Res 2012; 37:1381-91. [DOI: 10.1007/s11064-012-0712-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/19/2012] [Indexed: 12/12/2022]
|