1
|
Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, Chen L, He FG, Liu YM, Fan YT, Gongga L, Chen TX, Liu WH, He XH, Peng BW. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics 2022; 19:660-681. [PMID: 35182379 PMCID: PMC9226259 DOI: 10.1007/s13311-022-01198-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are critical regulators of the immune/inflammatory response in several human central nervous system (CNS) diseases. Emerging evidence suggests that dysfunctional astrocytes are crucial players in seizures. The objective of this study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in 4-aminopyridine (4-AP)-induced seizures and the underlying mechanism. We also provide evidence for the role of Yes-associated protein (YAP) in seizures. 4-AP was administered to mice or primary cultured astrocytes. YAP-specific small interfering RNA (siRNA) was administered to primary cultured astrocytes. Mouse brain tissue and surgical specimens from epileptic patient brains were examined, and the results showed that TRPV4 was upregulated, while astrocytes were activated and polarized to the A1 phenotype. The levels of glial fibrillary acidic protein (GFAP), cytokine production, YAP, signal transducer activator of transcription 3 (STAT3), intracellular Ca2+([Ca2+]i) and the third component of complement (C3) were increased in 4-AP-induced mice and astrocytes. Perturbations in the immune microenvironment in the brain were balanced by TRPV4 inhibition or the manipulation of [Ca2+]i in astrocytes. Knocking down YAP with siRNA significantly inhibited 4-AP-induced pathological changes in astrocytes. Our study demonstrated that astrocytic TRPV4 activation promoted neuroinflammation through the TRPV4/Ca2+/YAP/STAT3 signaling pathway in mice with seizures. Astrocyte TRPV4 inhibition attenuated neuroinflammation, reduced neuronal injury, and improved neurobehavioral function. Targeting astrocytic TRPV4 activation may provide a promising therapeutic approach for managing epilepsy.
Collapse
Affiliation(s)
- Meng-liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Jing-jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xing-liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xiang-lei Jia
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xue-lei Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Ling Chen
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Fang-gang He
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Yu-min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Yuan-teng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Lanzi Gongga
- Tibet University Medical College, 850000 Lhasa, Tibet China
| | - Tao-xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Wan-hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Xiao-hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Bi-wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| |
Collapse
|
2
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Dhir A, Chopra K. On the anticonvulsant effect of allopregnanolone (a neurosteroid) in neonatal rats. Life Sci 2015; 143:202-8. [DOI: 10.1016/j.lfs.2015.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/03/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
|
4
|
Neuroprotective or neurotoxic effects of 4-aminopyridine mediated by KChIP1 regulation through adjustment of Kv 4.3 potassium channels expression and GABA-mediated transmission in primary hippocampal cells. Toxicology 2015; 333:107-117. [PMID: 25917026 DOI: 10.1016/j.tox.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/05/2015] [Accepted: 04/22/2015] [Indexed: 11/21/2022]
Abstract
4-Aminopyridine (4-AP) is a potassium channel blocker used for the treatment of neuromuscular disorders. Otherwise, it has been described to produce a large number of adverse effects among them cell death mediated mainly by blockage of K(+) channels. However, a protective effect against cell death has also been described. On the other hand, Kv channel interacting protein 1 (KChIP1) is a neuronal calcium sensor protein that is predominantly expressed at GABAergic synapses and it has been related with modulation of K(+) channels, GABAergic transmission and cell death. According to this KChIP1 could play a key role in the protective or toxic effects induced by 4-AP. We evaluated, in wild type and KChIP1 silenced primary hippocampal neurons, the effect of 4-AP (0.25μM to 2mM) with or without semicarbazide (0.3M) co-treatment after 24h and after 14 days 4-AP alone exposure on cell viability, the effect of 4-AP (0.25μM to 2mM) on KChIP1 and Kv 4.3 potassium channels gene expression and GABAergic transmission after 24h treatment or after 14 days exposure to 4-AP (0.25μM to1μM). 4-AP induced cell death after 24h (from 1mM) and after 14 days treatment. We observed that 4-AP modulates KChIP1 which regulate Kv 4.3 channels expression and GABAergic transmission. Our study suggests that KChIP1 is a key gene that has a protective effect up to certain concentration after short-term treatment with 4-AP against induced cell injury; but this protection is erased after long term exposure, due to KChIP1 down-regulation predisposing cell to 4-AP induced damages. These data might help to explain protective and toxic effects observed after overdose and long term exposure.
Collapse
|
5
|
Jaiswal MK, Keros S, Zhao M, Inan M, Schwartz TH, Anderson SA, Homanics GE, Goldstein PA. Reduction in focal ictal activity following transplantation of MGE interneurons requires expression of the GABAA receptor α4 subunit. Front Cell Neurosci 2015; 9:127. [PMID: 25914623 PMCID: PMC4391265 DOI: 10.3389/fncel.2015.00127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/18/2015] [Indexed: 12/14/2022] Open
Abstract
Despite numerous advances, treatment-resistant seizures remain an important problem. Loss of neuronal inhibition is present in a variety of epilepsy models and is suggested as a mechanism for increased excitability, leading to the proposal that grafting inhibitory interneurons into seizure foci might relieve refractory seizures. Indeed, transplanted medial ganglionic eminence interneuron progenitors (MGE-IPs) mature into GABAergic interneurons that increase GABA release onto cortical pyramidal neurons, and this inhibition is associated with reduced seizure activity. An obvious conclusion is that inhibitory coupling between the new interneurons and pyramidal cells underlies this effect. We hypothesized that the primary mechanism for the seizure-limiting effects following MGE-IP transplantation is the tonic conductance that results from activation of extrasynaptic GABAA receptors (GABAA-Rs) expressed on cortical pyramidal cells. Using in vitro and in vivo recording techniques, we demonstrate that GABAA-R α4 subunit deletion abolishes tonic currents (Itonic) in cortical pyramidal cells and leads to a failure of MGE-IP transplantation to attenuate cortical seizure propagation. These observations should influence how the field proceeds with respect to the further development of therapeutic neuronal transplants (and possibly pharmacological treatments).
Collapse
Affiliation(s)
- Manoj K Jaiswal
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Cornell Medical College New York, NY, USA
| | - Sotirios Keros
- Department of Pediatrics, Weill Cornell Medical College New York, NY, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medical College New York, NY, USA ; Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Melis Inan
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College New York, NY, USA ; Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh Pittsburgh, PA, USA
| | - Peter A Goldstein
- C.V. Starr Laboratory for Molecular Neuropharmacology, Department of Anesthesiology, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
6
|
Shi L, Yang AC, Li JJ, Meng DW, Jiang B, Zhang JG. Favorable modulation in neurotransmitters: Effects of chronic anterior thalamic nuclei stimulation observed in epileptic monkeys. Exp Neurol 2015; 265:94-101. [DOI: 10.1016/j.expneurol.2015.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
7
|
Chen N, Yan N, Liu C, Ge Y, Zhang JG, Meng FG. Neuroprotective effects of electrical stimulation of the anterior nucleus of the thalamus for hippocampus neurons in intractable epilepsy. Med Hypotheses 2013; 80:517-9. [PMID: 23481284 DOI: 10.1016/j.mehy.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
Epilepsy and Parkinson's disease (PD) are common neurological disorders. Both epilepsy and PD are potentially progressive disabling diseases that can be treated with the established therapy of deep brain stimulation (DBS). The difference in therapy is target selection and stimulation parameter modulation. The anterior nucleus of the thalamus (ANT) is chosen for intractable epilepsy and the subthalamic nucleus (STN) is chosen for PD. Long-term stable symptom control of STN-DBS can be seen in PD patients while the positive effect of ANT-DBS can be observed in epilepsy patients. Experimental data and clinical evidence have been reported that indicate the neuroprotective property of STN-DBS could be found in PD patients. Therefore, we hypothesize that the neuroprotective benefits of ANT-DBS may be present in epilepsy patients.
Collapse
Affiliation(s)
- Ning Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Medina-Ceja L, Sandoval-García F, Morales-Villagrán A, López-Pérez SJ. Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus. J Biomed Sci 2012; 19:78. [PMID: 22931236 PMCID: PMC3438021 DOI: 10.1186/1423-0127-19-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder produced by an imbalance between excitatory and inhibitory neurotransmission, in which transporters of both glutamate and GABA have been implicated. Hence, at different times after local administration of the convulsive drug 4-aminopyridine (4-AP) we analyzed the expression of EAAT-3 and GAT-1 transporter proteins in cells of the CA1 and dentate gyrus. METHODS Dual immunofluorescence was used to detect the co-localization of transporters and a neuronal marker. In parallel, EEG recordings were performed and convulsive behavior was rated using a modified Racine Scale. RESULTS By 60 min after 4-AP injection, EAAT-3/NeuN co-labelling had increased in dentate granule cells and decreased in CA1 pyramidal cells. In the latter, this decrease persisted for up to 180 min after 4-AP administration. In both the DG and CA1, the number of GAT-1 labeled cells increased 60 min after 4-AP administration, although by 180 min GAT-1 labeled cells decreased in the DG alone. The increase in EAAT-3/NeuN colabelling in DG was correlated with maximum epileptiform activity and convulsive behavior. CONCLUSIONS These findings suggest that a compensatory mechanism exists to protect against acute seizures induced by 4-AP, whereby EAAT-3/NeuN cells is rapidly up regulated in order to enhance the removal of glutamate from the extrasynaptic space, and attenuating seizure activity.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratorio de Neurofisiología y Neuroquímica, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km, 15,5 Carretera Guadalajara-Nogales Predio "Las Agujas", Nextipac, Zapopan, Jalisco CP 45110, Mexico.
| | | | | | | |
Collapse
|
10
|
Liu HG, Yang AC, Meng DW, Chen N, Zhang JG. Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 2012; 1477:37-44. [PMID: 22902771 DOI: 10.1016/j.brainres.2012.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/17/2022]
Abstract
We investigated the changes in the levels of amino acids during high frequency stimulation (HFS) of the anterior nucleus of the thalamus (ANT) in epileptic rats, which had seizures induced by unilaterally stereotactic administration of kainic acid (KA). Thirty-six adult male Wistar rats were divided into three groups: the KA-stim group (KA rats received ipsilateral ANT stimulation), the KA-sham group (KA rats received sham stimulation) and the control group, which underwent stereotactic administration of saline and received ipsilateral ANT stimulation. Microdialysis probes were unilaterally lowered into the CA3 region of the hippocampus, but probes were implanted bilaterally in the KA-stim group. The concentrations of glutamate (Glu), taurine (Tau), aspartate (Asp) and γ-aminobutyric acid (GABA) in the dialysate samples were determined by high-performance liquid chromatography. The concentrations of Glu, Asp and Tau in the hippocampi of KA rats were significantly higher than that found in control rats; however, no difference in the concentrations of GABA were found. In the ipsilateral hippocampi (KA-injected) of rats in the KA-stim group, stimulation of the ANT caused decreases in concentrations of Glu and Asp, an increase in the concentration of GABA and no significant change in the concentration of Tau. Unilateral ANT stimulation did not influence the amino acids in the contralateral hippocampus. In control rats, extracellular Tau significantly increased during and after stimulation. This study demonstrated that unilateral ANT stimulation inhibited the hyperactivation of the excitatory process and promoted the inhibitory process in the ipsilateral hippocampus of KA rats.
Collapse
Affiliation(s)
- Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tian Tan Xi Li, Beijing 100050, China
| | | | | | | | | |
Collapse
|