1
|
Ikemoto K, Mohamad Ishak NS, Akagawa M. The effects of pyrroloquinoline quinone disodium salt on brain function and physiological processes. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:23-28. [PMID: 38735721 DOI: 10.2152/jmi.71.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Pyrroloquinoline quinone disodium salt (PQQ) is a red trihydrate crystal that was approved as a new food ingredient by FDA in 2008. Now, it is approved as a food in Japan and the EU. PQQ has redox properties and exerts antioxidant, neuroprotective, and mitochondrial biogenesis effects. The baseline intake level of PQQ is considered to be 20 mg/day. PQQ ingestion lowers blood lipid peroxide levels in humans, suggesting antioxidant activity. In the field of cognitive function, double-blind, placebo-controlled trials have been conducted. Various improvements have been reported regarding general memory, verbal memory, working memory, and attention. Furthermore, a stratified analysis of a population with a wide range of ages revealed unique effects in young people (20-40 years old) that were not observed in older adults (41-65 years old). Specifically, cognitive flexibility and executive speed improved more rapidly in young people at 8 weeks. Co-administration of PQQ and coenzyme Q10 further enhanced these effects. In an open-label trial, PQQ was shown to improve sleep and mood. Additionally, PQQ was found to suppress skin moisture loss and increase PGC-1α expression. Overall, PQQ is a food with various functions, including brain health benefits. J. Med. Invest. 71 : 23-28, February, 2024.
Collapse
Affiliation(s)
- Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Co, Inc., Niigata, Japan
| | | | - Mitsugu Akagawa
- Department of Food and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
2
|
Sangha V, Aboulhassane S, Qu QR, Bendayan R. Protective effects of pyrroloquinoline quinone in brain folate deficiency. Fluids Barriers CNS 2023; 20:84. [PMID: 37981683 PMCID: PMC10659058 DOI: 10.1186/s12987-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Qing Rui Qu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Wen P, Zheng B, Zhang B, Ma T, Hao L, Zhang Y. The role of ageing and oxidative stress in intervertebral disc degeneration. Front Mol Biosci 2022; 9:1052878. [PMID: 36419928 PMCID: PMC9676652 DOI: 10.3389/fmolb.2022.1052878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of intervertebral disc (IVD) disease. With the increased ageing of society, an increasing number of patients are plagued by intervertebral disc disease. Ageing not only accelerates the decreased vitality and functional loss of intervertebral disc cells but also increases intracellular oxidative stress. Moreover, the speed of intervertebral disc ageing is also linked to high levels of reactive oxygen species (ROS) production. Not only is the production of ROS increased in ageing intervertebral disc cells, but antioxidant levels in degenerative intervertebral discs also decrease. In addition to the intervertebral disc, the structural components of the intervertebral disc matrix are vulnerable to oxidative damage. After chronic mitochondrial dysfunction, ROS can be produced in large quantities, while autophagy can eliminate these impaired mitochondria to reduce the production of ROS. Oxidative stress has a marked impact on the occurrence of IDD. In the future, IDD treatment is aiming to improve oxidative stress by regulating the redox balance in intervertebral disc cells. In summary, ageing and oxidative stress promote the degeneration of IVD, but further basic and clinical trials are needed to determine how to treat oxidative stress. At present, although there are many in-depth studies on the relationship between oxidative stress and degeneration of intervertebral disc cells, the specific mechanism has not been elucidated. In this paper, the main causes of intervertebral disc diseases are studied and summarized, and the impact of oxidative stress on intervertebral disc degeneration is studied.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bolong Zheng
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
The Role of Oxidative Stress in Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2166817. [PMID: 35069969 PMCID: PMC8769842 DOI: 10.1155/2022/2166817] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a very common type of degenerative disease causing severe socioeconomic impact, as well as a major cause of discogenic low back pain and herniated discs, placing a heavy burden on patients and the clinicians who treat them. IDD is known to be associating with a complex process involving in extracellular matrix and cellular damage, and in recent years, there is increasing evidence that oxidative stress is an important activation mechanism of IDD and that reactive oxygen and reactive nitrogen species regulate matrix metabolism, proinflammatory phenotype, autophagy and senescence in intervertebral disc cells, apoptosis, autophagy, and senescence. Despite the tremendous efforts of researchers within the field of IDD pathogenesis, the proven strategies to prevent and treat this disease are still very limited. Up to now, several antioxidants have been proved to be effective for alleviating IDD. In this article, we discussed that oxidative stress accelerates disc degeneration by influencing aging, inflammation, autophagy, and DNA methylation, and summarize some antioxidant therapeutic measures for IDD, indicating that antioxidant therapy for disc degeneration holds excellent promise.
Collapse
|
5
|
Cheng Q, Chen J, Guo H, Lu JL, Zhou J, Guo XY, Shi Y, Zhang Y, Yu S, Zhang Q, Ding F. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson's disease model via AMPK activation. Acta Pharmacol Sin 2021; 42:665-678. [PMID: 32860006 PMCID: PMC8115282 DOI: 10.1038/s41401-020-0487-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is considered to be one of the important pathogenesis in Parkinson's disease (PD). We previously showed that pyrroloquinoline quinone (PQQ) could protect SH-SY5Y cells and dopaminergic neurons from cytotoxicity and prevent mitochondrial dysfunction in rotenone-induced PD models. In the present study we investigated the mechanisms underlying the protective effects of PQQ in a mouse PD model, which was established by intraperitoneal injection of rotenone (3 mg·kg-1·d-1, ip) for 3 weeks. Meanwhile the mice were treated with PQQ (0.8, 4, 20 mg·kg-1·d-1, ip) right after rotenone injection for 3 weeks. We showed that PQQ treatment dose-dependently alleviated the locomotor deficits and nigral dopaminergic neuron loss in PD mice. Furthermore, PQQ treatment significantly diminished the reduction of mitochondria number and their pathological change in the midbrain. PQQ dose-dependently blocked rotenone-caused reduction in the expression of PGC-1α and TFAM, two key activators of mitochondrial gene transcription, in the midbrain. In rotenone-injured human neuroblastoma SH-SY5Y cells, PTMScan Direct analysis revealed that treatment with PQQ (100 μM) differentially regulated protein phosphorylation; the differentially expressed phosphorylated proteins included the signaling pathways related with adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway. We conducted Western blot analysis and confirmed that AMPK was activated by PQQ both in PD mice and in rotenone-injured SH-SY5Y cells. Pretreatment with AMPK inhibitor dorsomorphin (4 μM) significantly attenuated the protective effect and mitochondrial biogenesis by PQQ treatment in rotenone-injured SH-SY5Y cells. Taken together, PQQ promotes mitochondrial biogenesis in rotenone-injured mice and SH-SY5Y cells via activation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hui Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jin-Li Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xin-Yu Guo
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yue Shi
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yu Zhang
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, China.
| |
Collapse
|
6
|
Govindarajulu M, Ramesh S, Neel L, Fabbrini M, Buabeid M, Fujihashi A, Dwyer D, Lynd T, Shah K, Mohanakumar KP, Smith F, Moore T, Dhanasekaran M. Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer's disease. Neurochem Int 2021; 144:104958. [PMID: 33444675 DOI: 10.1016/j.neuint.2021.104958] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and its incidence is increasing worldwide with increased lifespan. Currently, there is no effective treatment to cure or prevent the progression of AD, which indicates the need to develop novel therapeutic targets and agents. Sirtuins, especially SIRT3, a mitochondrial deacetylase, are NAD-dependent histone deacetylases involved in aging and longevity. Accumulating evidence indicates that SIRT3 dysfunction is strongly associated with pathologies of AD, hence, therapeutic modulation of SIRT3 activity may be a novel application to ameliorate the pathologies of AD. Natural products commonly used in traditional medicine have wide utility and appear to have therapeutic benefits for the treatment of neurodegenerative diseases such as AD. The present review summarizes the currently available natural SIRT3 activators and their potentially neuroprotective molecular mechanisms of action that make them a promising agent in the treatment and management of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Logan Neel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Mary Fabbrini
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Manal Buabeid
- Clinical Pharmacy Department, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Darby Dwyer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Tyler Lynd
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Karishma Shah
- Department of Ophthalmology, D.Y. Patil Medical College and Research Hospital, Mumbai, India
| | | | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849, USA.
| |
Collapse
|
7
|
Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy. Molecules 2020; 25:molecules25194359. [PMID: 32977419 PMCID: PMC7582530 DOI: 10.3390/molecules25194359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson’s disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.
Collapse
|
8
|
Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5637235. [PMID: 31827682 PMCID: PMC6886355 DOI: 10.1155/2019/5637235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023]
Abstract
Dibromoacetic acid (DBA) is one of haloacetic acids, often as a by-product of disinfection in drinking water. DBA is a multiple-organ carcinogen in rodent animals, but little research on its hepatotoxicity has been conducted and its mechanism has not been elucidated. In this study, we found that DBA could induce obvious hepatotoxcity in Balb/c mice as indicated by histological changes, increasing serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and accumulation of hepatic glycogen, after the mice were administered DBA at doses of 1.25, 5, and 20 mg/kg body weight for 28 days via oral gavage. In mechanism study, DBA induced oxidative stress as evidenced by increasing the level of malondialdehyde (MDA), reactive oxygen species (ROS) in the liver, advanced oxidative protein products (AOPPs) in the serum, and decreasing the level of glutathione (GSH) in the liver. DBA induced inflammation in the liver of the mice which is supported by increasing the production of tumor necrosis factor-α (TNF-α) and the mRNA levels of TNF-α, interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor κB (NF-κB) in the liver. DBA also upregulated the protein levels of Toll-like receptor (TLR) 4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), inhibitor of nuclear factor κB alpha (IκB-α), nuclear factor κB p65 (NF-κB p65), and the phosphoralation of P38 mitogen-activated protein kinase (P38MAPK) and c-Jun N-terminal kinase (JNK). Conclusion. DBA could induce hepatotoxicity in mice by oral exposure; the mechanism is related to oxidative stress, inflammation, and Toll-like receptor 4 signaling pathway activation.
Collapse
|
9
|
PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci Rep 2018; 8:8894. [PMID: 29891841 PMCID: PMC5995849 DOI: 10.1038/s41598-018-26962-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is known to be associated with various age-related diseases. D-galactose (D-gal) has been considered a senescent model which induces oxidative stress response resulting in memory dysfunction. Pyrroloquinoline quinone (PQQ) is a redox cofactor which is found in various foods. In our previous study, we found that PQQ may be converted into a derivative by binding with amino acid, which is beneficial to several pathological processes. In this study, we found a beneficial glutamate mixture which may diminish neurotoxicity by oxidative stress in D-gal induced mouse. Our results showed that PQQ may influence the generation of proinflammatory mediators, including cytokines and prostaglandins during aging process. D-gal-induced mouse showed increased MDA and ROS levels, and decreased T-AOC activities in the hippocampus, these changes were reversed by PQQ supplementation. Furthermore, PQQ statistically enhanced Superoxide Dismutase SOD2 mRNA expression. PQQ could ameliorate the memory deficits and neurotoxicity induced by D-gal via binding with excess glutamate, which provide a link between glutamate-mediated neurotoxicity, inflammation and oxidative stress. In addition, PQQ reduced the up-regulated expression of p-Akt by D-gal and maintained the activity of GSK-3β, resulting in a down-regulation of p-Tau level in hippocampus. PQQ modulated memory ability partly via Akt/GSK-3β pathway.
Collapse
|
10
|
Pereira DR, Tapeinos C, Rebelo AL, Oliveira JM, Reis RL, Pandit A. Scavenging Nanoreactors that Modulate Inflammation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diana R. Pereira
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Christos Tapeinos
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Ana L. Rebelo
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| | - Joaquim M. Oliveira
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Rui L. Reis
- 3B's Research Group; University of Minho; Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Abhay Pandit
- CÚRAM; Centre for Research in Medical Devices; National University of Ireland, Galway; Galway Ireland
| |
Collapse
|
11
|
Jiang W, Chen Y, Li B, Gao S. DBA-induced caspase-3-dependent apoptosis occurs through mitochondrial translocation of cyt-c in the rat hippocampus. MOLECULAR BIOSYSTEMS 2018; 13:1863-1873. [PMID: 28731097 DOI: 10.1039/c7mb00246g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dibromoacetic acid (DBA), a by-product of disinfection, develops in drinking water during chlorination or ozonation processes. Water intake is the main source of DBA exposure in humans, which is potentially neurotoxic. The present study investigated the neurotoxic effects of DBA by assessing the behavioral and biochemical characteristics of Sprague Dawley rats intragastrically treated with DBA at concentrations of 20, 50 and 125 mg kg-1 body weight for 28 consecutive days. The results indicated that animal weight gain and food consumption were not significantly affected by DBA. However, shuttle box tests showed increases in mistake frequency and reaction latency between the control and high-dose group. We found significant changes in hippocampal neurons by histomorphological observation. Additionally, biochemical analysis indicated enhanced production of reactive oxygen species (ROS) resulting in disruption of cellular antioxidant defense systems including decreased mitochondrial superoxide dismutase (SOD) activity and release of cytochrome c (cyt-c) from mitochondria into the cytosol, which can induce neuronal apoptosis. Furthermore, the increase of cyt-c in the cytosol enhanced caspase-3 and caspase-9 activity, which was confirmed by poly ADP-ribose polymerase-1 (PARP-1) cleavage to its signature fragment of 85 kDa and decreased levels of protein kinase C-δ (PKC-δ) in the hippocampus. Meanwhile, DBA treatment caused differential modulation of apoptosis-associated proteins and mRNAs for phosphorylated apoptosis signal regulating kinase 1 (p-ASK-1), phosphorylated c-jun N-terminal kinase (p-JNK), cyt-c, Bax, Bcl-2, caspase-9 and cleaved caspase-3 accompanied by DNA damage. Taken together, these data indicate that DBA may induce neurotoxicity via caspase-3-dependent apoptosis involving mitochondrial translocation of cyt-c in the rat hippocampus.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, P. R. China.
| | | | | | | |
Collapse
|
12
|
Jiang W, Li B, Chen Y, Gao S. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress. Metab Brain Dis 2017; 32:2009-2019. [PMID: 28844098 DOI: 10.1007/s11011-017-0095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bai Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yingying Chen
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Shuying Gao
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
13
|
ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28392887 DOI: 10.1155/2017/5601593.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.
Collapse
|
14
|
ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5601593. [PMID: 28392887 PMCID: PMC5368368 DOI: 10.1155/2017/5601593] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.
Collapse
|
15
|
N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotox Res 2017; 32:107-120. [PMID: 28285348 DOI: 10.1007/s12640-017-9717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
In this study, we explored the possible mechanisms underlying the neuroprotective and anti-oxidative effects of N-adamantyl-4-methylthiazol-2-amine (KHG26693) against in vivo glutamate-induced toxicity in the rat cerebral cortex. Our results showed that pretreatment with KHG26693 significantly attenuated glutamate-induced elevation of lipid peroxidation, tumor necrosis factor-α, interferon gamma, IFN-γ, interleukin-1β, nitric oxide, reactive oxygen species, NADPH oxidase, caspase-3, calpain activity, and Bax. Furthermore, KHG26693 pretreatment attenuated key antioxidant parameters such as levels of superoxide dismutase, catalase, glutathione, and glutathione reductase. KHG26693 also attenuated the protein levels of inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate cysteine ligase catalytic subunit caused by glutamate toxicity. Finally, KHG26693 mitigated glutamate-induced changes in mitochondrial ATP level and cytochrome oxidase c. Thus, KHG26693 functions as neuroprotective and anti-oxidative agent against glutamate-induced toxicity through its antioxidant and anti-inflammatory activities in rat brain at least in part.
Collapse
|
16
|
EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicol Appl Pharmacol 2016; 315:60-69. [PMID: 27939242 DOI: 10.1016/j.taap.2016.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/12/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H2O2. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress.
Collapse
|
17
|
Etemadi F, Sayyah M, Pourbadie HG, Babapour V. Facilitation of Hippocampal Kindling and Exacerbation of Kindled Seizures by Intra-CA1 Injection of Quinine: A Possible Role of Cx36 Gap Junctions. IRANIAN BIOMEDICAL JOURNAL 2016; 20:266-72. [PMID: 27108691 PMCID: PMC5075139 DOI: 10.22045/ibj.2016.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/14/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND GABAergic interneurons in the hippocampal CA1 area are mutually communicated by gap junctions (GJs) composed of connexin36 (Cx36). We examined the role of Cx36 in CA1 in manifestation of kindled seizures and hippocampal kindling in rats. METHODS Quinine, as the specific blocker of Cx36, was injected into CA1, and kindled seizures severity was examined 10 min afterward. Moreover, quinine was injected into CA1 once daily, and the rate of CA1 kindling was recorded. RESULTS Quinine 0.5 and 1 mM caused 2- and 3.5-fold increase in the duration of total seizure behavior and generalized the seizures. Primary and secondary afterdischarges (AD) were also significantly increased. Quinine 0.1 mM augmented the rate of kindling and the growth of secondary AD. CONCLUSION Cx36 GJs in CA1 are the main components of hippocampal inhibitory circuit. Any interruption in this path by pathologic or physical damages can trigger hippocampal hyperexcitability and facilitate epileptogenesis.
Collapse
Affiliation(s)
- Fatemeh Etemadi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahab Babapour
- Department of Physiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| |
Collapse
|
18
|
Zhang Q, Chen S, Yu S, Qin J, Zhang J, Cheng Q, Ke K, Ding F. Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease. Neuropharmacology 2016; 108:238-51. [DOI: 10.1016/j.neuropharm.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
|
19
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|
20
|
Pang T, Wang YJ, Gao YX, Xu Y, Li Q, Zhou YB, Xu L, Huang ZJ, Liao H, Zhang LY, Gao JR, Ye Q, Li J. A novel GSK-3β inhibitor YQ138 prevents neuronal injury induced by glutamate and brain ischemia through activation of the Nrf2 signaling pathway. Acta Pharmacol Sin 2016; 37:741-52. [PMID: 27108601 DOI: 10.1038/aps.2016.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
AIM To discover neuroprotective compounds and to characterize the discovered active compound YQ138 as a novel GSK-3β inhibitor. METHODS Primary rat cerebellar granule cells (CGCs) were treated with glutamate, and cell viability was analyzed with MTT assay, which was used as in vitro model for screening neuroprotective compounds. Active compound was further tested in OGD- or serum deprivation-induced neuronal injury models. The expression levels of GSK-3β downstream proteins (Nrf2, HO-1, NQO1, Tau and β-catenin) were detected with Western blotting. For evaluating the neuroprotective effects in vivo, adult male rats were subjected to transient middle cerebral artery occlusion (tMCAO), then treated with YQ138 (10 mg/kg, iv) at 2, 4 and 6 h after ischemia onset. RESULTS From a compound library consisting of about 2000 potential kinase inhibitors, YQ138 was found to exert neuroprotective effects: pretreatment with YQ138 (0.1-40 μmol/L) dose-dependently inhibited glutamate-induced neuronal death. Furthermore, pretreatment with YQ138 (10 μmol/L) significantly inhibited OGD- or serum deprivation-induced neuronal death. Among a panel of seven kinases tested, YQ138 selectively inhibited the activity of GSK-3β (IC50=0.52 nmol/L). Furthermore, YQ138 dose-dependently increased the expression of β-catenin, and decreased the phosphorylation of Tau in CGCs. Moreover, YQ138 significantly increased the expression of GSK-3β downstream antioxidative proteins Nrf2, HO-1, NQO1, GSH and SOD in CGCs. In rats with tMCAO, administration of YQ138 significantly decreased infarct volume, improved the neurological deficit, and increased the expression of Nrf2 and HO-1 and the activities of SOD and GSH in the cerebral cortex. CONCLUSION A novel GSK-3β inhibitor YQ138 effectively suppresses brain ischemic injury in vitro and in vivo.
Collapse
|
21
|
Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet. Animal 2016; 10:1129-36. [PMID: 26837542 DOI: 10.1017/s175173111600001x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (P<0.001), hepatic reactive oxygen species (P<0.05) and carbonyl group levels (P<0.001), but decreased plasma glutathione levels (P=0.006) in laying hens. These unfavorable changes induced by the oxidized sunflower oil diet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (P<0.05). PQQ.Na2 or vitamin E diminished the oxidized sunflower oil diet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (P<0.001) and maintained these indices at the similar levels to the fresh oil diet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (P<0.05) and tail moment (P<0.05) compared with the fresh oil group. Dietary supplementation of PQQ.Na2 or vitamin E decreased the oxidized oil diet induced DNA tail length and tail moment to the basal levels in fresh oil diet. These results indicate that PQQ.Na2 is a potential antioxidant and is as effective against oxidized oil-related liver injury in laying hens as vitamin E. The protective effects of PQQ.Na2 against liver damage induced by oxidized oil may be partially due to its role in the scavenging of free radicals, inhibiting of lipid peroxidation and enhancing of antioxidant defense systems.
Collapse
|
22
|
Qin J, Wu M, Yu S, Gao X, Zhang J, Dong X, Ji J, Zhang Y, Zhou L, Zhang Q, Ding F. Pyrroloquinoline quinone-conferred neuroprotection in rotenone models of Parkinson’s disease. Toxicol Lett 2015; 238:70-82. [DOI: 10.1016/j.toxlet.2015.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/22/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
23
|
Gao Y, Xu X, Chang S, Wang Y, Xu Y, Ran S, Huang Z, Li P, Li J, Zhang L, Saavedra JM, Liao H, Pang T. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction. Toxicol Appl Pharmacol 2015; 289:142-54. [PMID: 26440581 DOI: 10.1016/j.taap.2015.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/22/2015] [Accepted: 10/02/2015] [Indexed: 11/24/2022]
Abstract
The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague-Dawley rats, produced by occlusion of the middle cerebral artery for 2h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress.
Collapse
Affiliation(s)
- Yuanxue Gao
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaojun Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sai Chang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yunjie Wang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yazhou Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Siqi Ran
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhangjian Huang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ping Li
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, PR China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
24
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
25
|
Singh AK, Pandey SK, Saha G, Gattupalli NK. Pyrroloquinoline quinone (PQQ) producing Escherichia coli Nissle 1917 (EcN) alleviates age associated oxidative stress and hyperlipidemia, and improves mitochondrial function in ageing rats. Exp Gerontol 2015; 66:1-9. [DOI: 10.1016/j.exger.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/24/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023]
|
26
|
Wang J, Zhang H, Samuel K, Long C, Wu S, Yue H, Sun L, Qi G. Effects of dietary pyrroloquinoline quinone disodium on growth, carcass characteristics, redox status, and mitochondria metabolism in broilers. Poult Sci 2015; 94:215-25. [DOI: 10.3382/ps/peu050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 11/20/2022] Open
|
27
|
Effects of dietary pyrroloquinoline quinone disodium on growth performance, carcass yield and antioxidant status of broiler chicks. Animal 2015; 9:409-16. [DOI: 10.1017/s1751731114002328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Kumar N, Kar A. Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice. Can J Physiol Pharmacol 2015; 93:71-9. [DOI: 10.1139/cjpp-2014-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes, characterized by hyperglycemia, leads to several complications through the generation of reactive oxygen species and initiates tissue damage. Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant, as it protects cells from oxidative damage. In this study, we elucidated the hitherto unknown potential of PQQ to ameliorate the brain damage caused by diabetes mellitus and the associated hyperglycemia-induced oxidative damage. Administration of a single dose of streptozotocin (STZ), i.e., 150 mg·(kg body mass)−1significantly enhanced the brain tissue levels of lipid peroxidation and hydroperoxidation and decreased the levels of antioxidants. It also increased the serum levels of glucose, cholesterol, and triglycerides. However, when STZ-treated animals received PQQ (20 mg·(kg body mass)−1·d−1, for 15 days), this significantly decreased the serum levels of glucose and lipid peroxidation products, and increased the activities of antioxidants in the diabetic mouse brain. These findings suggest that PQQ has the potential to ameliorate STZ-induced oxidative damage in the brain, as well as the STZ-induced diabetes.
Collapse
Affiliation(s)
- Narendra Kumar
- School of Life Sciences, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh, India
| |
Collapse
|
29
|
Yang L, Rong Z, Zeng M, Cao Y, Gong X, Lin L, Chen Y, Cao W, Zhu L, Dong W. Pyrroloquinoline quinone protects nucleus pulposus cells from hydrogen peroxide-induced apoptosis by inhibiting the mitochondria-mediated pathway. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1702-10. [PMID: 25349108 DOI: 10.1007/s00586-014-3630-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Intervertebral disc cell apoptosis has been suggested to play a key role in promoting disc degeneration, and many studies have shown that the mechanism may be related to oxidative stress. Pyrroloquinoline quinone (PQQ), a redox cofactor for bacterial dehydrogenases, possesses the potential to scavenge reactive oxygen species (ROS) and inhibit cell apoptosis. The objective of this study was to evaluate the effects of PQQ on cultured rat nucleus pulposus (NP) cells under conditions of oxidative injury induced by hydrogen peroxide (H2O2) and to investigate the underlying mechanisms in vitro. METHODS Cell viability was determined by CCK8 assay. Changes in the apoptosis rate, intracellular ROS levels and the mitochondrial membrane potential were measured by flow cytometry. Extracellular matrix (ECM)-related proteins (collagen-2 and aggrecan) and apoptosis-related proteins (Bcl-2, Bax, cytochrome c, and caspase-3) were investigated by western blotting. RESULTS The results show that NP cells pretreated with PQQ before H2O2 exposure exhibited increased cell viability, decreased ROS formation, maintained mitochondrial membrane potential, and reduced apoptosis. In the presence of PQQ, ECM production was maintained by the cells despite being in an apoptotic environment. In addition, pretreatment with PQQ increased the expression of Bcl-2, inhibited the release of mitochondrial cytochrome c, and decreased the expressions of Bax and cleaved caspase-3. CONCLUSIONS Our results suggest that PQQ can protect rat NP cells against oxidative stress via a mitochondria-mediated pathway. PQQ might be useful as a potential pharmaceutical agent in the prevention of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Lianjun Yang
- Department of Orthopaedics, Zhu Jiang Hospital, Southern Medical University, No. 253, Gongye Big Road, Guangzhou, 510280, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiménez E, Núñez E, Ibáñez I, Draffin JE, Zafra F, Giménez C. Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem Int 2014; 79:33-43. [PMID: 25454285 DOI: 10.1016/j.neuint.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/03/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The glutamate transporters GLAST and GLT-1 are mainly expressed in glial cells and regulate glutamate levels in the synapses. GLAST and GLT-1 are the targets of several signaling pathways. In this study we explore the possible functional interaction between these transporters and GSK3β. This kinase is involved in multiple cellular processes including neuronal development and synaptic plasticity. To evaluate whether GLT-1 and GLAST were regulated by GSK3β, we coexpressed these proteins in heterologous expression systems. In both COS-7 cells and Xenopus laevis oocytes, GSK3β stimulated the activity of GLT-1 and reduced that of GLAST. These effects were associated with corresponding changes in the amounts of GLT-1 or GLAST in the plasma membrane. These effects were suppressed by inhibitors of GSK3β or a catalytically inactive form of the kinase. GSK3β also decreases the incorporation of (32)Pi into GLT-1 and increases GLAST phosphorylation. Pharmacological inhibition of endogenous GSK3β in primary cultures of rat brain cortex also leads to a differential modulation of GLT-1 and GLAST. Our results suggest that constitutively active GSK3β is important in controlling the expression of functional glutamate transporters on the plasma membrane. This regulation might be relevant in physiological and pathological conditions in which glutamate transporters and GSK3β signaling are involved.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Núñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Ibáñez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Jonathan E Draffin
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
31
|
Zhang Q, Zhang J, Jiang C, Qin J, Ke K, Ding F. Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rotenone-induced SH-SY5Y cell injury. Neuroscience 2014; 270:183-91. [DOI: 10.1016/j.neuroscience.2014.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
|
32
|
Patel B, Saviolaki G, Ayats C, Garcia MAE, Kapadia T, Hilton ST. Tuneable radical cyclisations: a tin-free approach towards tricyclic and spirocyclic heterocycles via a common precursor. RSC Adv 2014. [DOI: 10.1039/c4ra02420f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A novel common precursor approach towards both tricyclic and spirocyclic heterocycles is described. Cyclisations are based on thiyl radical/isocyanide methodology and avoid the use of tin.
Collapse
Affiliation(s)
- B. Patel
- UCL School of Pharmacy
- London, UK
| | | | - C. Ayats
- UCL School of Pharmacy
- London, UK
| | | | | | | |
Collapse
|
33
|
Kim EA, Choi J, Han AR, Choi SY, Hahn HG, Cho SW. Anti-oxidative and anti-inflammatory effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on glutamate-induced neurotoxicity in rat brain. Neurotoxicology 2013; 38:106-14. [DOI: 10.1016/j.neuro.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/13/2023]
|