1
|
Zhang Z, Luo X, Jiang L, Wu H, Tan Z. How do HCN channels play a part in Alzheimer's and Parkinson's disease? Ageing Res Rev 2024; 100:102436. [PMID: 39047878 DOI: 10.1016/j.arr.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD) are well-known, yet their underlying causes remain unclear. Recent studies have suggested that disruption of ion channels contribute to their pathogenesis. Among these channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, encoded by HCN1-4 genes, are of particular interest due to their role in generating hyperpolarization-activated current (Ih), which is crucial in various neural activities impacting memory and motor functions. A growing body of evidence underscores the pivotal role of HCN in Aβ generation, glial cell function, and ischemia-induced dementia; while HCN is expressed in various regions of the basal ganglia, modulating their functions and influencing motor disorders in PD; neuroinflammation triggered by microglial activation represents a shared pathological mechanism in both AD and PD, in which HCN also plays a significant part. This review delves into the neuronal functions governed by HCN, its roles in the aforementioned pathogenesis, its expression patterns in AD and PD, and discusses potential therapeutic drugs targeting HCN for the treatment of these diseases, aiming to offer a novel perspective and inspire future research endeavors.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang 421001, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China.
| |
Collapse
|
2
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
β-Adrenoceptor Blockade Moderates Neuroinflammation in Male and Female EAE Rats and Abrogates Sexual Dimorphisms in the Major Neuroinflammatory Pathways by Being More Efficient in Males. Cell Mol Neurobiol 2023; 43:1237-1265. [PMID: 35798933 DOI: 10.1007/s10571-022-01246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced β-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell β2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell β2-adrenoceptor (β2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.
Collapse
|
4
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
5
|
Zhang Y, Li M, Wang W, He S. Carvedilol activates nuclear factor E2-related factor 2/ antioxidant response element pathway to inhibit oxidative stress and apoptosis of retinal pigment epithelial cells induced by high glucose. Bioengineered 2022; 13:735-745. [PMID: 34898371 PMCID: PMC8805944 DOI: 10.1080/21655979.2021.2012627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetic retinopathy (DR) is the most prominent manifestation of diabetic microangiopathy and is a serious complication of diabetes. Despite extensive researches focusing on DR, treatment options for DR are still limited. Carvedilol (CAR) has vasodilatory, antioxidant stress and anti-inflammatory effects and poses a vital role in addressing the issue of diabetic complications. This paper attempts to explore this property of CAR and investigate into its effects on DR. First, ARPE-19 cells were treated with different concentrations of CAR and cells were induced with 30 mM high glucose (HG) to establish a DR cell model. Cell viability was assayed by cell counting kit-8 (CCK-8) with or without HG induction. Cellular inflammation and oxidative stress were evaluated by enzyme-linked immunosorbent assay (ELISA) and corresponding kits. The measurement of apoptosis levels was conducted by Terminal dUTP nick-end labeling (TUNEL) and Western blotting. The protein levels related to Nrf2/ARE signaling pathway were assessed by Western blotting. Finally, cellular inflammation, oxidative stress and apoptosis in ARPE-19 cells pretreated with Nrf2 inhibitor ML385 were tested again by the same methods. Results showed that under HG induction, CAR effectively improved ARPE-19 cell viability, inhibited cellular inflammation, oxidative stress, and apoptosis. Moreover, CAR activated Nrf2/ARE signaling pathway, which further suppressed cellular inflammation, oxidative stress, and apoptosis. Overall, CAR inhibited HG-induced oxidative stress and apoptosis in retinal pigment epithelial cells by activating Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Ophthalmology, Nantong Haimen People's Hospital, Nantong, Jiangsu Province, China
| | - Mingcun Li
- Department of Ophthalmology, Nantong Haimen People's Hospital, Nantong, Jiangsu Province, China
| | - Weixing Wang
- Department of Ophthalmology, Nantong Haimen People's Hospital, Nantong, Jiangsu Province, China
| | - Siyu He
- Department of Ophthalmology, Nantong Haimen People's Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
7
|
Hassan MI, Ali FE, Shalkami AGS. Role of TLR-4/IL-6/TNF-α, COX-II and eNOS/iNOS pathways in the impact of carvedilol against hepatic ischemia reperfusion injury. Hum Exp Toxicol 2021; 40:1362-1373. [PMID: 33655798 DOI: 10.1177/0960327121999442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. METHODS Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. RESULTS Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. CONCLUSIONS CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.
Collapse
Affiliation(s)
- Mohamed Ia Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 195495Al-Azhar University, Assiut, Egypt
| |
Collapse
|
8
|
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem 2021; 29:1757-1803. [PMID: 33982650 DOI: 10.2174/0929867328666210512005508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder, and multiple pathological factors are believed to be involved in the genesis and progression of the disease. A number of hypotheses, including Acetylcholinesterase, Monoamine oxidase, β-Amyloid, Tau protein, etc., have been proposed for the initiation and progression of the disease. At present, acetylcholine esterase inhibitors and memantine (NMDAR antagonist) are the only approved therapies for the symptomatic management of AD. Most of these single-target drugs have miserably failed in the treatment or halting the progression of the disease. Multi-factorial diseases like AD require complex treatment strategies that involve simultaneous modulation of a network of interacting targets. Since the last few years, Multi-Target-Directed Ligands (MTDLs) strategy, drugs that can simultaneously hit multiple targets, is being explored as an effective therapeutic approach for the treatment of AD. In the current review article, the authors have briefly described various pathogenic pathways associated with AD. The importance of Multi-Target-Directed Ligands and their design strategies in recently reported articles have been discussed in detail. Potent leads are identified through various structure-activity relationship studies, and their drug-like characteristics are described. Recently developed promising compounds have been summarized in the article. Some of these MTDLs with balanced activity profiles against different targets have the potential to be developed as drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | - Amandeep Thakur
- Central University of Punjab Department of Pharmaceutical Sciences and Natural Products, India
| | | | - Rakesh Kumar
- Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
9
|
Magadmi RM, Alsulaimani MA, Al-Rafiah AR, Esmat A. The Neuroprotective Effect of Carvedilol on Diabetic Neuropathy: An In Vitro Study. J Diabetes Res 2021; 2021:6927025. [PMID: 33532503 PMCID: PMC7834839 DOI: 10.1155/2021/6927025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetic neuropathy serves as a major complication for diabetic patients across the world. The use of effective treatment is integral for reducing the health complications for diabetic patients. This study has evaluated the carvedilol potential neuroprotective effect on diabetic neuropathy. An in vitro model of diabetic neuropathy was used, including dorsal root ganglia (DRG) that were cultured from male adult mice C57BL. These were incubated for about twenty-four hours in high glucose (HG) media (45 mM). Some cells were incubated with carvedilol (10 μM). Neuronal viability, neuronal morphology, and activating transcription factor 3 (AFT3) were measured. The cell viability was decreased, along with neuronal length, soma area, and soma perimeter with HG media. Also, there was an overexpression of ATF3, which is a neuronal stress response marker. The pretreatment with carvedilol increased the viability of DRG as compared to HG-treated cells. Also, it significantly protected the DRG from HG-induced morphology changes. Though it shows a decrease in AFT3 expression, the statistical results were insignificant. The current study demonstrates the neuroprotective effect of carvedilol against HG-induced DN using an in vitro model. This could be through carvedilol antioxidant effects.
Collapse
Affiliation(s)
- Rania M. Magadmi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mujahid A. Alsulaimani
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Ministry of Health, Taif, Saudi Arabia
| | - Aziza Rashed Al-Rafiah
- Department of Pharmacy, Ministry of Health, Taif, Saudi Arabia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, Yan B. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: A mini review. J Biochem Mol Toxicol 2020; 35:e22658. [PMID: 33118292 DOI: 10.1002/jbt.22658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress, an imbalance between reactive oxygen species and antioxidants, has been seen in the pathological states of many disorders such as ischemic diseases and cancers. Many natural compounds (NCs) have long been recognized to ameliorate oxidative stress due to their inherent antioxidant activities. The modulation of oxidative stress by NCs via activating the Nrf2 signaling pathway is summarized in the review. Three NCs, ursolic acid, betulinic acid, and curcumin, and the mechanisms of their cytoprotective effects are investigated in myocardial ischemia, cerebral ischemia, skin cancer, and prostate cancer. To promote the therapeutic performance of NCs with poor water solubility, the formulation approach, such as the nano drug delivery system, is elaborated as well in this review.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Chen
- China National Intellectual Property Administration Patent Re-examination and Invalidation Department Pharmaceutical Division, Beijing, China
| | - Xing Zhang
- Departments of Urology, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, Jiangsu, China
| | - Fuxing Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Liu B, Liu YJ. Carvedilol Promotes Retinal Ganglion Cell Survival Following Optic Nerve Injury via ASK1-p38 MAPK Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:695-704. [PMID: 31577210 DOI: 10.2174/1871527318666191002095456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carvedilol, which is considered as a nonselective β-adrenoreceptor blocker, has many pleiotropic activities. It also causes great impact on neuroprotection because of its antioxidant ability, which suggested that carvedilol may be effective in protecting RGCs from increased oxidative stress. OBJECTIVE To examine the effects of carvedilol on preventing Retinal Ganglion Cell (RGC) death in a mouse model of Optic Nerve Injury (ONI). METHODS C57BL/6J mice were subjected to Optic Nerve Injury (ONI) model and treated with carvedilol or placebo. Histological and morphometric studies were performed; the RGC number, the amount of neurons in the ganglion cell layer and the thickness of the Inner Retinal Layer (IRL) was quantified. The average thickness of Ganglion Cell Complex (GCC) was determined by the Spectral- Domain OCT (SD-OCT) assay. Immunohistochemistry, western blot and quantitative real-time PCR analysis were also applied. RESULTS Daily treatment of carvedilol reduced RGC death following ONI, and in vivo retinal imaging revealed that carvedilol can effectively prevent retinal degeneration. The expression of chemokines important for micorglia recruitment was deceased with carvedilol ingestion and the accumulation of retinal microglia is reduced consequently. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with carvedilol treatment in the retina. We also discovered that carvedilol suppressed ONI-induced activation of Apoptosis Signal-regulating Kinase-1 (ASK1) and p38 Mitogen-Activated Protein Kinase (MAPK) pathway. CONCLUSION The results of this study indicate that carvedilol can stimulate neuroprotection and neuroregeneration, and may be useful for treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Bei Liu
- Department of Vitreoretina, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yu-Jia Liu
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| |
Collapse
|
12
|
Pilipović I, Stojić-Vukanić Z, Prijić I, Jasnić N, Leposavić G. Propranolol diminished severity of rat EAE by enhancing immunoregulatory/protective properties of spinal cord microglia. Neurobiol Dis 2020; 134:104665. [DOI: 10.1016/j.nbd.2019.104665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
|
13
|
Refaie MMM, El-Hussieny M, Bayoumi AMA, Shehata S. Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103198. [PMID: 31154273 DOI: 10.1016/j.etap.2019.103198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal with several harmful effects including cardiotoxicity. For the first time, we aimed to evaluate the possible cardioprotective effect of carvedilol (CAR) in Cd induced cardiotoxicity and study the mechanisms involved in such protection including endothelial nitric oxide synthase (eNOS) and HO1/Nrf2 pathway. CAR (1,10 mg/kg/d) was administered orally for 4 weeks with Cd induced cardiac injury (3 mg/kg/d) orally for 4 weeks. We measured cardiac enzymes, mean arterial pressure changes, heme oxygenase-1 (HO1) and total antioxidant capacity (TAC). Moreover; cardiac tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), western blotting of caspase3 and eNOS levels and histopathology were evaluated. Immunoexpression of eNOS in cardiac tissue, gene expression changes of HO1, and nuclear factor erythroid 2-related factor 2 (Nrf2) using real time polymerase chain reactions (rtPCR) were detected. Our results showed that CAR could significantly decrease Cd induced cardiotoxicity.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt.
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61511, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, 61511, El-Minia, Egypt
| |
Collapse
|
14
|
Curcumin and α/ β-Adrenergic Antagonists Cotreatment Reverse Liver Cirrhosis in Hamsters: Participation of Nrf-2 and NF- κB. J Immunol Res 2019; 2019:3019794. [PMID: 31183386 PMCID: PMC6515016 DOI: 10.1155/2019/3019794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Liver cirrhosis is the result of an uncontrolled fibrogenetic process, due to the activation and subsequent differentiation into myofibroblasts of the hepatic stellate cells (HSC). It is known that HSC express adrenoreceptors (AR), and the use of AR antagonists protects experimental animals from cirrhosis. However, several studies suggest that the toxicity generated by metabolism of these antagonists would hinder its use in cirrhotic patients. In addition, liver fibrosis may be associated with a decrease of the antioxidant response of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and the overregulation of the proinflammatory pathway of nuclear factor kappa B (NF-κB). Therefore, in the present work, the capacity of doxazosin (α1 antagonist), carvedilol (nonselective beta-adrenoceptor blocker with alpha 1-blocking properties), and curcumin (antioxidant and anti-inflammatory compound) to reverse liver cirrhosis and studying the possible modulation of Nrf-2 and NF-κB were evaluated. Hamsters received CCl4 for 20 weeks, and then treatments were immediately administered for 4 weeks more. The individual administration of doxazosin or carvedilol showed less ability to reverse cirrhosis in relation to concomitantly curcumin administration. However, the best effect was the combined effect of doxazosin, carvedilol, and curcumin, reversing liver fibrosis and decreasing the amount of collagen I (Sirius red stain) without affecting the morphology of hepatocytes (hematoxylin and eosin stain), showing normal hepatic function (glucose, albumin, AST, ALT, total bilirubin, and total proteins). In addition, carvedilol treatment and the combination of doxazosin with curcumin increased Nrf-2/NF-κB mRNA ratio and its protein expression in the inflammatory cells in the livers, possibly as another mechanism of hepatoprotection. Therefore, these results suggest for the first time that α/β adrenergic blockers with curcumin completely reverse hepatic damage, possibly as a result of adrenergic antagonism on HSC and conceivably by the increase of Nrf-2/NF-κB mRNA ratio.
Collapse
|
15
|
Medina-Ruiz D, Erreguin-Luna B, Luna-Vázquez FJ, Romo-Mancillas A, Rojas-Molina A, Ibarra-Alvarado C. Vasodilation Elicited by Isoxsuprine, Identified by High-Throughput Virtual Screening of Compound Libraries, Involves Activation of the NO/cGMP and H₂S/K ATP Pathways and Blockade of α₁-Adrenoceptors and Calcium Channels. Molecules 2019; 24:molecules24050987. [PMID: 30862086 PMCID: PMC6429095 DOI: 10.3390/molecules24050987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, our research group demonstrated that uvaol and ursolic acid increase NO and H2S production in aortic tissue. Molecular docking studies showed that both compounds bind with high affinity to endothelial NO synthase (eNOS) and cystathionine gamma-lyase (CSE). The aim of this study was to identify hits with high binding affinity for the triterpene binding-allosteric sites of eNOS and CSE and to evaluate their vasodilator effect. Additionally, the mechanism of action of the most potent compound was explored. A high-throughput virtual screening (HTVS) of 107,373 compounds, obtained from four ZINC database libraries, was performed employing the crystallographic structures of eNOS and CSE. Among the nine top-scoring ligands, isoxsuprine showed the most potent vasodilator effect. Pharmacological evaluation, employing the rat aorta model, indicated that the vasodilation produced by this compound involved activation of the NO/cGMP and H2S/KATP signaling pathways and blockade of α1-adrenoceptors and L-type voltage-dependent Ca2+ channels. Incubation of aorta homogenates in the presence of isoxsuprine caused 2-fold greater levels of H2S, which supported our preliminary in silico data. This study provides evidence to propose that the vasodilator effect of isoxsuprine involves various mechanisms, which highlights its potential to treat a wide variety of cardiovascular diseases.
Collapse
Affiliation(s)
- Daniella Medina-Ruiz
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico.
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Berenice Erreguin-Luna
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Francisco J Luna-Vázquez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| |
Collapse
|
16
|
Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity in PC12 cells by down-regulation of microRNA-192-5p. Brain Res 2018; 1708:84-92. [PMID: 30552896 DOI: 10.1016/j.brainres.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD), which is caused by neurodegenerative disorder, has no effective treatment until now. Baicalin was reported to have neuroprotective effects. Hence, we investigated the effects of baicalin on PD in an in vitro cell model by using 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma PC12 cells. PC12 cells were stimulated by 6-OHDA and were treated with baicalin and/or transfected with miR-192-5p mimic or negative control (NC). Cell viability and apoptosis were examined by Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) analysis, respectively. The expression of p62, ratio of light chain (LC)3-II/LC3-I, miR-192-5p was detected by qRT-PCR. All protein expression levels were analyzed by western blot. We found that 6-OHDA significantly inhibited cell viability, induced apoptosis and autophagy, while baicalin reversed the results led by 6-OHDA. Moreover, baicalin negatively regulated expression of miR-192-5p. Under baicalin treatment, transfection with miR-192-5p mimic decreased cell viability and induced apoptosis and autophagy in 6-OHDA-treated cells compared with NC. In addition, the phosphorylation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (AKT) was statistically down-regulated by baicalin then thereafter reversed by miR-192-5p mimic. Baicalin reduced 6-OHDA-induced cell injury through down-regulation of miR-192-5p, as well as regulation of PI3K/AKT and MDM-2/p53 signal pathways.
Collapse
|
17
|
Fan J, Lv H, Li J, Che Y, Xu B, Tao Z, Jiang W. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J Cell Physiol 2018; 234:7695-7707. [PMID: 30565676 DOI: 10.1002/jcp.27767] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) leads to injury in distant organs, most commonly the lungs, although limited studies have examined self-protective mechanisms during CIRI-induced lung injury. Here, we investigated self-protective mechanisms that attenuate stress-related injury and promote the angiogenetic repair of epithelial function during CIRI-induced lung injury by measuring nuclear factor erythroid-related factor 2 (Nrf2) and hypoxia-inducible factor-1α (HIF-1α) levels. A CIRI model was established in male Sprague-Dawley rats by blocking the middle cerebral artery. Rats were divided into five subgroups based on the reperfusion time (6, 12, 24, 48, and 72 hr). Lung injury was assessed using a semiquantitative score and a thiobarbituric acid-based method of determining malonaldehyde production. Lung tissue angiogenesis was detected by CD34 and CD31 immunolabeling. Changes in Nrf2, heme oxygenase-1 (HO-1), HIF-1α, vascular-endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), extracellular-regulated kinase1/2 (ERK1/2), and phospho-ERK1/2 ( p-ERK1/2) protein- and mRNA-expression levels were measured by immunohistochemistry and reverse transcription polymerase chain reactions, respectively. Oxidative stress induced by cerebral ischemia/reperfusion (CI/R) caused lung injury. Expression of the Nrf2/HO-1 antioxidative stress pathway in lung tissues increased following CI/R, peaking after 24 hr. PI3K, ERK, and p-ERK1/2, which act upstream of Nrf2/HO-1, were expressed at higher levels in the CI/R-model group, consistent with the general trends observed for Nrf2/HO-1. Within 72 hr post-CI/R, HIF-1α, and VEGF expression significantly increased versus the sham group. Thus, during CIRI-induced lung injury, the body may upregulate antioxidative stress activities and promote angiogenesis to repair the endothelial barrier through the Nrf2/HO-1 and HIF-1α/VEGF signaling pathways, enabling self-protection.
Collapse
Affiliation(s)
- Jianhua Fan
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuqin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Baoning Xu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zuo Tao
- Department of China Medical University, Shenyang, China
| | - Wenjun Jiang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Park M, Steinberg SF. Carvedilol Prevents Redox Inactivation of Cardiomyocyte Β 1-Adrenergic Receptors. JACC Basic Transl Sci 2018; 3:521-532. [PMID: 30175276 PMCID: PMC6116783 DOI: 10.1016/j.jacbts.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
The mechanism that leads to a decrease in β1-adrenergic receptor (β1AR) expression in the failing heart remains uncertain. This study shows that cardiomyocyte β1AR expression and isoproterenol responsiveness decrease in response to oxidative stress. Studies of mechanisms show that the redox-dependent decrease in β1AR expression is uniquely prevented by carvedilol and not other βAR ligands. Carvedilol also promotes the accumulation of N-terminally truncated β1ARs that confer protection against doxorubicin-induced apoptosis in association with activation of protein kinase B. The redox-induced molecular controls for cardiomyocyte β1ARs and pharmacologic properties of carvedilol identified in this study have important clinical and therapeutic implications.
Collapse
Key Words
- AKT
- AKT, protein kinase B
- CREB, cyclic adenosine monophosphate binding response element protein
- ERK, extracellular regulated kinase
- FL, full-length
- GFX, GF109203X
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- PKA, protein kinase A
- PKC, protein kinase C
- PTX, pertussis toxin
- ROS, reactive oxygen species
- cAMP, cyclic adenosine monophosphate
- cardiomyocytes
- cardioprotection
- oxidant stress
- β1-adrenergic receptor
- βAR, β-adrenergic receptor
Collapse
Affiliation(s)
- Misun Park
- Department of Pharmacology, Columbia University, New York, New York
| | | |
Collapse
|
19
|
Liu J, Wang M. Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones 2018; 23:695-702. [PMID: 29435723 PMCID: PMC6045552 DOI: 10.1007/s12192-018-0881-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/29/2022] Open
Abstract
Mutations in amyloid precursor protein (APP) and presenilin1 result in overproduction and accumulation of β-amyloid (Aβ) peptide, which has been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Carvedilol, a nonselective β-adrenergic receptor blocker used for treatment for heart failure and hypertension, has displayed its neuroprotective capacity due to its antioxidant property. In this study, we investigated whether Carvedilol has a neuronal protective effect against endogenous Aβ neurotoxicity in mouse Neuro2a (N2a) cells transfected with Swedish amyloid precursor protein (Swe-APP) mutant and Presenilin exon9 deletion mutant (N2a/Swe.D9). Elevated levels of reactive oxygen species (ROS), protein carbonyls, and 4-HNE were found in N2a/Swe.D9 cells, which were ameliorated by administration of Carvedilol in a dose-dependent manner. In addition, the levels of ATP and mitochondrial membrane potential were reduced in N2a/Swe.D9 cells, which were restored by treatment with Carvedilol. N2a/Swe.D9 cells displayed increased vulnerability to H2O2-induced cell death and apoptosis, which could be attenuated by Carvedilol. Mechanistically, we found that Carvedilol prevented apoptosis signals through reducing cytochrome C release and the level of cleaved caspase-3. Taken together, our findings suggest a possible use of Carvedilol in AD treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong, 252000, China
| | - Min Wang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Dongchangfu District, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
20
|
Zhang X, Wang Y, Wang SN, Chen QH, Tu YL, Yang XH, Chen JK, Yan JW, Pi RB, Wang Y. Discovery of a novel multifunctional carbazole–aminoquinoline dimer for Alzheimer's disease: copper selective chelation, anti-amyloid aggregation, and neuroprotection. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
de Los Rios C, Cano-Abad MF, Villarroya M, López MG. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflugers Arch 2017; 470:187-198. [PMID: 28823085 DOI: 10.1007/s00424-017-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.
Collapse
Affiliation(s)
- Cristobal de Los Rios
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria F Cano-Abad
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain. .,Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells. Eur J Pharmacol 2017; 814:144-150. [PMID: 28821450 DOI: 10.1016/j.ejphar.2017.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/17/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
Abstract
Microglia initially undergo rapid activation in response to injury and stressful stimuli, such as hypoxia. Oxidative stress and the inflammatory response play critical roles in hypoxic-ischemic brain injury. Carvedilol is a β-blocker used to treat high blood pressure and heart failure. In this study, we investigated whether carvedilol had a protective effect against hypoxia-induced oxidative stress and inflammation in microglial BV2 cells. Our results indicate that hypoxic exposure significantly reduced mean cell viability of BV2 microglia, which was significantly restored by carvedilol (10 and 50μM). In addition, carvedilol treatment significantly inhibited the hypoxia-induced increase in reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE). Administration of carvedilol significantly inhibited expression of IL-1β, TNF-α, and IL-6 at both the mRNA and protein levels. Mechanistically, we found that hypoxia significantly increased phosphorylation of IKK, IκBα, and NF-κB p65. However, treatment with carvedilol inhibited phosphorylation of these molecules. Notably, hypoxia resulted in a significant nuclear translocation of NF-κB p65, which was inhibited by administration of carvedilol. Luciferase reporter assay results demonstrate that treatment with carvedilol inhibited the hypoxia-induced increase in NF-κB binding activity. These data suggest that carvedilol may be of potential use as a novel therapy against hypoxia or ischemia.
Collapse
|
23
|
Du J, Wu H, Du X, Zhao Z, Zhao X, Shi Y, Guo X, Du L. Magnetic mixed hemimicelle solid-phase extraction based on mixed hemi-/ad-micelle SDS-coated magnetic nanoparticles Fe2-xAlxO3 (x = 0.4) for the fluorimetric determination of carvedilol in biological samples. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mixed hemi-/ad-micelle SDS-coated magnetic nanoparticles (Fe2-xAlxO3 (x = 0.4)) were used as an efficient adsorbent for the extraction and preconcentration of carvedilol (CVD) based on magnetic mixed hemimicelle solid-phase extraction. The Fe2-xAlxO3 magnetic nanoparticles not only have better stability and resistance to acidity, as well as alkalinity, but also are easy to prepare, inexpensive, and environmentally friendly. Several parameters that affected the extraction efficiency were investigated, including the type and volume of desorption solvent, extraction and desorption times, pH of the solution, zeta potential, and amounts of adsorbent and surfactant. Under the optimized extraction conditions, the developed method showed good linearity (R2 = 0.9998) within the range of 0.02–2.7 ng mL−1, and the limit of detection was 0.009 ng mL−1. The spiked recoveries of CVD in urine and plasma samples ranged from 101.50% to 111.00%. To the best of our knowledge, this is the first time that a mixed hemi-/ad-micelle solid-phase extraction method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for the monitoring of CVD in biological samples.
Collapse
Affiliation(s)
- Juanli Du
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Hao Wu
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Xiaohui Du
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Zhimin Zhao
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Xin Zhao
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Yating Shi
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Xiaozhen Guo
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| | - Liming Du
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, Shanxi, P.R. China 041004
| |
Collapse
|
24
|
Félix L, Oliveira M, Videira R, Maciel E, Alves ND, Nunes FM, Alves A, Almeida JM, Domingues MRM, Peixoto FP. Carvedilol exacerbate gentamicin-induced kidney mitochondrial alterations in adult rat. ACTA ACUST UNITED AC 2017; 69:83-92. [DOI: 10.1016/j.etp.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/05/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
25
|
Luo L, Chen J, Su D, Chen M, Luo B, Pi R, Wang L, Shen W, Wang R. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochem Res 2017; 42:615-624. [PMID: 28078613 DOI: 10.1007/s11064-016-2117-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Abstract
Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.
Collapse
Affiliation(s)
- Liting Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,Department of Pharmacy, Zhuhai Maternal and Child Health Hospital, Zhuhai, 519000, China.,Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingkao Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dan Su
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Meihui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lan Wang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
26
|
Dong Q, Hou H, Wu J, Chen Y. The Nrf2-ARE pathway is associated with Schisandrin b attenuating benzo(a)pyrene-Induced HTR cells damages in vitro. ENVIRONMENTAL TOXICOLOGY 2016; 31:1439-1449. [PMID: 25946486 DOI: 10.1002/tox.22149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
As is ubiquitous in the environmental sources, benzo(a)pyrene (BaP) has been reported to induce reprotoxicity in previous studies. Toxicity to trophoblast cells may be one key factor, but evidences were absent. We speculated that BaP can induce cytotoxicity in human trophoblast HTR-8/SVneo (HTR) cells, and Schisandrin B (Sch B) as a potential protector can inhibit the cytotoxicity. MTS assay identified that BaP induced HTR cells death while Sch B played a cytoprotective role. And after Nrf2 interference, the ability of Sch B-induced cytoprotection was declined. Furthermore, PCR, western blot, ELISA, and SOD assays were found that Sch B significantly increased the mRNA and protein expression of Nrf2, HO1, NQO1, and SOD in the Nrf2-ARE pathway, and the extents of increase were declined after Nrf2 interference. These results demonstrated that the Nrf2-ARE pathway plays an important role in Sch B attenuating BaP-induced HTR cells damages in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1439-1449, 2016.
Collapse
Affiliation(s)
- Qulong Dong
- Department of Obstetrics and Gynecology, Affiliated Hospital of Logistics University of the Chinese People's Armed Forces, Tianjin, 300162, China
| | - Haiyan Hou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Logistics University of the Chinese People's Armed Forces, Tianjin, 300162, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jun Wu
- Program in Public Health and Department of Epidemiology, University of California, Irvine, 92697, USA
| | - Yaqiong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Logistics University of the Chinese People's Armed Forces, Tianjin, 300162, China.
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, 300162, China.
| |
Collapse
|
27
|
Zou XD, Guo SQ, Hu ZW, Li WL. NAMPT protects against 6-hydroxydopamine-induced neurotoxicity in PC12 cells through modulating SIRT1 activity. Mol Med Rep 2016; 13:4058-64. [PMID: 27035562 DOI: 10.3892/mmr.2016.5034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative movement disorder. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate‑limiting step in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in mammals, is a substrate for NAD+‑dependent enzymes, such as sirtuin 1 (SIRT1), and contributes to cell fate decisions. However, the role of NAMPT in PD has remained to be fully elucidated. In the present study, PC12 cells were treated with the neurotoxin 6-hydroxydopamine (6‑OHDA) to establish an in vitro model of PD, following which an obvious inhibitory effect on the levels of NAMPT and NAD+ as well as the NAD+/NADH ratio was detected. In addition, pre‑incubation with FK866, a highly specific NAMPT inhibitor, enhanced the inhibitory effects of 6‑OHDA on the viability of PC12, while pre‑incubation with nicotinamide mononucleotide (NMN), am enzymatic product of NAMPT, had the opposite effect. Furthermore, it was revealed that NMN markedly attenuated 6‑OHDA‑induced decreases in superoxide dismutase activity and glutathione levels, as well as 6‑OHDA‑induced increases in malondialdehyde and lactate dehydrogenase in PC12 cells. Furthermore, 6‑OHDA significantly reduced SIRT1 activity in PC12 cells, which was inhibited by NMN. The pharmacological activator resveratrol also significantly inhibited 6‑OHDA‑mediated decreases in PC12 cell viability while reversing 6‑OHDA‑induced decreases in SIRT1 levels. The results of the present study suggested that NMT protected against 6‑OHDA‑induced decreases in PC12 cell viability, and that SIRT1 activation had a role in this process. Treatment with NMN to activate SIRT1 may represent a novel therapeutic strategy for treating PD.
Collapse
Affiliation(s)
- Xiao-Dong Zou
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Shao-Qing Guo
- Department of Massage, The Third Affiliated Hospital of Zhejiang Province Traditional Chinese Medical University, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhi-Wei Hu
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei-Lang Li
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
28
|
Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway. Biomed Pharmacother 2016; 78:257-263. [PMID: 26898450 DOI: 10.1016/j.biopha.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/03/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.
Collapse
|
29
|
Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways. Stem Cells Int 2015; 2016:9394150. [PMID: 27022401 PMCID: PMC4684894 DOI: 10.1155/2016/9394150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 01/14/2023] Open
Abstract
Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.
Collapse
|
30
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|