1
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
2
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Morina IY, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Hypothalamic Signaling and Expression of Hepatic Gluconeogenesis Genes in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Shpakov AO, Avrova NF. Effects of Intranasally Administered Insulin and Gangliosides on Metabolic Parameters and Activity of the Hepatic Insulin System in Rats with Type 2 Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Zakharova IO, Bayunova LV, Zorina II, Shpakov AO, Avrova NF. Insulin and Brain Gangliosides Prevent Metabolic Disorders Caused by Activation of Free Radical Reactions after Two-Vessel Ischemia–Reperfusion Injury to the Rat Forebrain. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Turning the spotlight on the oligosaccharide chain of GM1 ganglioside. Glycoconj J 2021; 38:101-117. [PMID: 33620588 PMCID: PMC7917043 DOI: 10.1007/s10719-021-09974-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named “OligoGM1”. These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson’s disease.
Collapse
|
6
|
Acute Trimethyltin Poisoning Caused by Exposure to Polyvinyl Chloride Production: 8 Cases. Am J Med Sci 2021; 362:92-98. [PMID: 33587910 DOI: 10.1016/j.amjms.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/30/2020] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
This manuscript aimed to describe and analyze acute trimethyltin poisoning caused by exposure to polyvinyl chloride production and review the literature. Combined with an analysis of occupational hygiene survey data, the clinical data of 8 cases of acute trimethyltin poisoning were analyzed retrospectively. The clinical manifestations of acute trimethyltin poisoning are mainly related to central nervous system damage, hypokalemia and metabolic acidosis in patients with severe poisoning. Early positive potassium supplementation and symptomatic treatment are beneficial to the improvement of the condition. The early recognition of central nervous system manifestations and hypokalemia is beneficial for early diagnosis and correct treatment.
Collapse
|
7
|
Modulation of calcium signaling depends on the oligosaccharide of GM1 in Neuro2a mouse neuroblastoma cells. Glycoconj J 2020; 37:713-727. [PMID: 33201378 PMCID: PMC7679337 DOI: 10.1007/s10719-020-09963-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Recently, we demonstrated that the oligosaccharide portion of ganglioside GM1 is responsible, via direct interaction and activation of the TrkA pathway, for the ability of GM1 to promote neuritogenesis and to confer neuroprotection in Neuro2a mouse neuroblastoma cells. Recalling the knowledge that ganglioside GM1 modulates calcium channels activity, thus regulating the cytosolic calcium concentration necessary for neuronal functions, we investigated if the GM1-oligosaccharide would be able to overlap the GM1 properties in the regulation of calcium signaling, excluding a specific role played by the ceramide moiety inserted into the external layer of plasma membrane. We observed, by calcium imaging, that GM1-oligosaccharide administration to undifferentiated Neuro2a cells resulted in an increased calcium influx, which turned out to be mediated by the activation of TrkA receptor. The biochemical analysis demonstrated that PLCγ and PKC activation follows the TrkA stimulation by GM1-oligosaccharide, leading to the opening of calcium channels both on the plasma membrane and on intracellular storages, as confirmed by calcium imaging experiments performed with IP3 receptor inhibitor. Subsequently, we found that neurite elongation in Neuro2a cells was blocked by subtoxic administration of extracellular and intracellular calcium chelators, suggesting that the increase of intracellular calcium is responsible of GM1-oligosaccharide mediated differentiation. These results suggest that GM1-oligosaccharide is responsible for the regulation of calcium signaling and homeostasis at the base of the neuronal functions mediated by plasma membrane GM1.
Collapse
|
8
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
9
|
Fazzari M, Audano M, Lunghi G, Di Biase E, Loberto N, Mauri L, Mitro N, Sonnino S, Chiricozzi E. The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Glycoconj J 2020; 37:293-306. [PMID: 32266604 DOI: 10.1007/s10719-020-09920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The crucial role of ganglioside GM1 in the regulation of neural homeostasis has been assessed by several studies. Recently we shed new light on the molecular basis underlying GM1 effects demonstrating that GM1 oligosaccharide directly binds TrkA receptor and triggers MAPK pathway activation leading to neuronal differentiation and protection. Following its exogenous administration, proteomic analysis revealed an increased expression of proteins involved in several biochemical mechanisms, including mitochondrial bioenergetics. Based on these data, we investigated the possible effect of GM1 oligosaccharide administration on mitochondrial function. We show that wild-type Neuro2a cells exposed to GM1 oligosaccharide displayed an increased mitochondrial density and an enhanced mitochondrial activity together with reduced reactive oxygen species levels. Interestingly, using a Neuro2a model of mitochondrial dysfunction, we found an increased mitochondrial oxygen consumption rate as well as increased complex I and II activities upon GM1 oligosaccharide administration. Taken together, our data identify GM1 oligosaccharide as a mitochondrial regulator that by acting at the plasma membrane level triggers biochemical signaling pathway inducing mitochondriogenesis and increasing mitochondrial activity. Although further studies are necessary, the capability to enhance the function of impaired mitochondria points to the therapeutic potential of the GM1 oligosaccharide for the treatment of pathologies where these organelles are compromised, including Parkinson's disease.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan (MI), Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan (MI), Italy.
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate (MI), Italy.
| |
Collapse
|
10
|
Di Biase E, Lunghi G, Fazzari M, Maggioni M, Pomè DY, Valsecchi M, Samarani M, Fato P, Ciampa MG, Prioni S, Mauri L, Sonnino S, Chiricozzi E. Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconj J 2020; 37:329-343. [PMID: 32198666 DOI: 10.1007/s10719-020-09919-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.
Collapse
Affiliation(s)
- Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
11
|
Sukhov IB, Lebedeva MF, Zakharova IO, Derkach KV, Bayunova LV, Zorina II, Avrova NF, Shpakov AO. Intranasal Administration of Insulin and Gangliosides Improves Spatial Memory in Rats with Neonatal Type 2 Diabetes Mellitus. Bull Exp Biol Med 2020; 168:317-320. [PMID: 31938916 DOI: 10.1007/s10517-020-04699-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/11/2022]
Abstract
We analyzed the effects of intranasal administration of insulin (0.48 U/rat) and gangliosides (6 mg/kg) on spatial memory in rats with the neonatal model of the type 2 diabetes mellitus. The development of diabetes was verified by the glucose tolerance test. Insulin and gangliosides improved training and reversal training in diabetic rats in a modified version of Morris water maze test and reduced the time of finding the hidden platform. High effectiveness of intranasal administration of gangliosides to animals for the normalization of cognitive functions was shown for the first time. The effects of insulin and gangliosides were similar during training, but during reversal training, gangliosides were more effective. At the same time, intranasally administered insulin, unlike gangliosides, partially normalized glucose tolerance in rats with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- I B Sukhov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - M F Lebedeva
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I O Zakharova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - K V Derkach
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - L V Bayunova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I I Zorina
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N F Avrova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - A O Shpakov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Chiricozzi E, Mauri L, Lunghi G, Di Biase E, Fazzari M, Maggioni M, Valsecchi M, Prioni S, Loberto N, Pomè DY, Ciampa MG, Fato P, Verlengia G, Cattaneo S, Assini R, Wu G, Alselehdar S, Ledeen RW, Sonnino S. Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1 +/- mouse model. Sci Rep 2019; 9:19330. [PMID: 31852959 PMCID: PMC6920361 DOI: 10.1038/s41598-019-55885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Given the recent in vitro discovery that the free soluble oligosaccharide of GM1 is the bioactive portion of GM1 for neurotrophic functions, we investigated its therapeutic potential in the B4galnt1+/− mice, a model of sporadic Parkinson’s disease. We found that the GM1 oligosaccharide, systemically administered, reaches the brain and completely rescues the physical symptoms, reduces the abnormal nigral α-synuclein content, restores nigral tyrosine hydroxylase expression and striatal neurotransmitter levels, overlapping the wild-type condition. Thus, this study supports the idea that the Parkinson’s phenotype expressed by the B4galnt1+/− mice is due to a reduced level of neuronal ganglioside content and lack of interactions between the oligosaccharide portion of GM1 with specific membrane proteins. It also points to the therapeutic potential of the GM1 oligosaccharide for treatment of sporadic Parkinson’s disease.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy.
| | - Laura Mauri
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy
| | - Gianluca Verlengia
- School of Medicine, University Vita-Salute San Raffaele, Milano, Italy.,Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- School of Medicine, University Vita-Salute San Raffaele, Milano, Italy
| | - Robert Assini
- Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Gusheng Wu
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samar Alselehdar
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert W Ledeen
- Division of Neurochemistry, Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sandro Sonnino
- Department of Medical Biotechnology and Transcriptional Medicine, University of Milano, Milano, Italy.
| |
Collapse
|
13
|
Chen F, Zhou CC, Yang Y, Liu JW, Yan CH. GM1 Ameliorates Lead-Induced Cognitive Deficits and Brain Damage Through Activating the SIRT1/CREB/BDNF Pathway in the Developing Male Rat Hippocampus. Biol Trace Elem Res 2019; 190:425-436. [PMID: 30414004 DOI: 10.1007/s12011-018-1569-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
Abstract
Developmental lead (Pb) exposure involves various serious consequences, especially leading to neurotoxicity. In this study, we examined the possible role of monosialoganglioside (GM1) in lead-induced nervous impairment in the developing rat. Newborn male Sprague-Dawley rat pups were exposed to lead from birth for 30 days and then subjected to GM1 administration (0.4, 2, or 10 mg/kg; i.p.) or 0.9% saline. The results showed that developmental lead exposure significantly impaired spatial learning and memory in the Morris water maze test, reduced GM1 content, induced oxidative stress, and weakened the antioxidative systems in the hippocampus. However, co-treatment with GM1 reversed these effects. Moreover, GM1 counteracted lead-induced apoptosis by decreasing the expression of Bax, cleaved caspase-3, and by increasing the level of Bcl-2 in a dose-dependent manner. Furthermore, we found that GM1 upregulated the expression of SIRT1, CREB phosphorylation, and BDNF, which underlie learning and memory in the lead-treated developing rat hippocampus. In conclusion, our study demonstrated that GM1 exerts a protective effect on lead-induced cognitive deficits via antioxidant activity, preventing apoptosis, and activating SIRT1/CREB/BDNF in the developing rat hippocampus, implying a novel potential assistant therapy for lead poisoning.
Collapse
Affiliation(s)
- Fei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Can-Can Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
14
|
Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF. The Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on the Modulation of Akt, GSK-3beta, ERK1/2, and AMPK Activities. Int J Mol Sci 2019; 20:ijms20153702. [PMID: 31362343 PMCID: PMC6696072 DOI: 10.3390/ijms20153702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin is a promising drug for the treatment of diseases associated with brain damage. However, the mechanism of its neuroprotective action is far from being understood. Our aim was to study the insulin-induced protection of cortical neurons in oxidative stress and its mechanism. Immunoblotting, flow cytometry, colorimetric, and fluorometric techniques were used. The insulin neuroprotection was shown to depend on insulin concentration in the nanomolar range. Insulin decreased the reactive oxygen species formation in neurons. The insulin-induced modulation of various protein kinase activities was studied at eight time-points after neuronal exposure to prooxidant (hydrogen peroxide). In prooxidant-exposed neurons, insulin increased the phosphorylation of GSK-3beta at Ser9 (thus inactivating it), which resulted from Akt activation. Insulin activated ERK1/2 in neurons 5–30 min after cell exposure to prooxidant. Hydrogen peroxide markedly activated AMPK, while it was for the first time shown that insulin inhibited it in neurons at periods of the most pronounced activation by prooxidant. Insulin normalized Bax/Bcl-2 ratio and mitochondrial membrane potential in neurons in oxidative stress. The inhibitors of the PI3K/Akt and MEK1/2/ERK1/2 signaling pathways and the AMPK activator reduced the neuroprotective effect of insulin. Thus, the protective action of insulin on cortical neurons in oxidative stress appear to be realized to a large extent through activation of Akt and ERK1/2, GSK-3beta inactivation, and inhibition of AMPK activity increased by neuronal exposure to prooxidant.
Collapse
Affiliation(s)
- Irina O Zakharova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Tatiana V Sokolova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Liubov V Bayunova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Inna I Zorina
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Maria P Rychkova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Alexander O Shpakov
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Natalia F Avrova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| |
Collapse
|
15
|
Chiricozzi E, Maggioni M, di Biase E, Lunghi G, Fazzari M, Loberto N, Elisa M, Scalvini FG, Tedeschi G, Sonnino S. The Neuroprotective Role of the GM1 Oligosaccharide, II 3Neu5Ac-Gg 4, in Neuroblastoma Cells. Mol Neurobiol 2019; 56:6673-6702. [PMID: 30911934 DOI: 10.1007/s12035-019-1556-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Recently, we demonstrated that the GM1 oligosaccharide, II3Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Erika di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maffioli Elisa
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
| | | | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
- Fondazione Unimi, v.le Ortles 22/4, 20139, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
16
|
Zorina II, Bayunova LV, Zakharova IO, Avrova NF. The Dependence of the Protective Effect of Insulin on Its Concentration and Modulation of ERK1/2 Activity under the Conditions of Oxidative Stress in Cortical Neurons. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712417040110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Cui N, Lu H, Li M, Yan Q. PTPN21 protects PC12 cell against oxygen-glucose deprivation by activating cdk5 through ERK1/2 signaling pathway. Eur J Pharmacol 2017; 814:226-231. [DOI: 10.1016/j.ejphar.2017.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022]
|
18
|
Chiricozzi E, Pomè DY, Maggioni M, Di Biase E, Parravicini C, Palazzolo L, Loberto N, Eberini I, Sonnino S. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 2017; 143:645-659. [PMID: 28796418 DOI: 10.1111/jnc.14146] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/27/2022]
Abstract
GM1 ganglioside (II3 NeuAc-Gg4 Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II3 NeuAc-Gg4, rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV2 αFucII3 Neu5Ac-Gg4 ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-nerve growth factor complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-nerve growth factor molecular interactions.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| |
Collapse
|
19
|
Zakharova IO, Sokolova TV, Vlasova YA, Bayunova LV, Rychkova MP, Avrova NF. α-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress. Int J Mol Sci 2017; 18:ijms18010216. [PMID: 28117722 PMCID: PMC5297845 DOI: 10.3390/ijms18010216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/14/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for brain extracellular space has not been practically studied yet. Preincubation with nanomolar and micromolar α-T for 18 h was found to increase the viability of cortical neurons exposed to H2O2; α-T effect was concentration-dependent in the nanomolar range. However, preincubation with nanomolar α-T for 30 min was not effective. Nanomolar and micromolar α-T decreased the reactive oxygen species accumulation induced in cortical neurons by the prooxidant. Using immunoblotting it was shown that preincubation with α-T at nanomolar and micromolar concentrations for 18 h prevented Akt inactivation and decreased PKCδ activation induced in cortical neurons by H2O2. α-T prevented the ERK1/2 sustained activation during 24 h caused by H2O2. α-T at nanomolar and micromolar concentrations prevented a great increase of the proapoptotic to antiapoptotic proteins (Bax/Bcl-2) ratio, elicited by neuron exposure to H2O2. The similar neuron protection mechanism by nanomolar and micromolar α-T suggests that a “more is better” approach to patients’ supplementation with vitamin E or α-T is not reasonable.
Collapse
Affiliation(s)
- Irina O Zakharova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Tatiana V Sokolova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Yulia A Vlasova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
- Preventive Medicine Department, Mechnikov North-West StateMedical University, Saint-Petersburg, Kirochnaya ul. 41, Saint-Petersburg 191015, Russia.
| | - Liubov V Bayunova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Maria P Rychkova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| | - Natalia F Avrova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| |
Collapse
|
20
|
Lopez PH, Aja S, Aoki K, Seldin MM, Lei X, Ronnett GV, Wong GW, Schnaar RL. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance. Glycobiology 2016; 27:129-139. [PMID: 27683310 DOI: 10.1093/glycob/cww098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.
Collapse
Affiliation(s)
| | - Susan Aja
- Center for Metabolic and Obesity Research.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Marcus M Seldin
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Xia Lei
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Gabriele V Ronnett
- Center for Metabolic and Obesity Research.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - G William Wong
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Jiang B, Song L, Wang CN, Zhang W, Huang C, Tong LJ. Antidepressant-Like Effects of GM1 Ganglioside Involving the BDNF Signaling Cascade in Mice. Int J Neuropsychopharmacol 2016; 19:pyw046. [PMID: 27207911 PMCID: PMC5043648 DOI: 10.1093/ijnp/pyw046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/02/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Depression is a serious psychiatric disorder that easily causes physical impairments and a high suicide rate. Monosialotetrahexosylganglioside is a crucial ganglioside for the central nervous system and has been reported to affect the function of the brain derived neurotrophic factor system. This study is aimed to evaluate whether monosialotetrahexosylganglioside has antidepressant-like effects. METHODS Antidepressant-like effects of monosialotetrahexosylganglioside were assessed in the chronic social defeat stress model of depression, and various behavioral tests were performed. Changes in the brain derived neurotrophic factor signaling pathway after chronic social defeat stress and monosialotetrahexosylganglioside treatment were also investigated. A tryptophan hydroxylase inhibitor and brain derived neurotrophic factor signaling inhibitors were used to determine the antidepressant mechanisms of monosialotetrahexosylganglioside. RESULTS Monosialotetrahexosylganglioside administration significantly reversed the chronic social defeat stress-induced reduction of sucrose preference and social interaction in mice and also prevented the increased immobility time in the forced swim test and tail suspension test. In addition, monosialotetrahexosylganglioside completely ameliorated the stress-induced dysfunction of brain derived neurotrophic factor signaling cascade in the hippocampus and medial prefrontal cortex, 2 regions closely involved in the pathophysiology of depression. Furthermore, the usage of brain derived neurotrophic factor signaling cascade inhibitors, K252a and anti-brain derived neurotrophic factor antibody, each abolished the antidepressant-like effects of monosialotetrahexosylganglioside, while the usage of a serotonin system inhibitor did not. CONCLUSIONS Taken together, our findings suggest that monosialotetrahexosylganglioside indeed has antidepressant-like effects, and these effects were mediated through the activation of brain derived neurotrophic factor signaling cascade.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China (Dr Jiang, Mrs Song, Dr Zhang, Dr Huang, and Mrs Tong); Provincial key laboratory of Inflammation and Molecular Drug Target, Jiangsu, China (Dr Jiang, Mrs Song, Dr Zhang, Dr Huang, and Mrs Tong); Basic Medical Research Centre, Medical College, Nantong University, Nantong, Jiangsu, China (Mr Wang).
| | | | | | | | | | | |
Collapse
|