1
|
Myers AM, Bowen SE, Brummelte S. Maternal care behavior and physiology moderate offspring outcomes following gestational exposure to opioids. Dev Psychobiol 2023; 65:e22433. [PMID: 38010303 DOI: 10.1002/dev.22433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
The opioid epidemic has resulted in a drastic increase in gestational exposure to opioids. Opioid-dependent pregnant women are typically prescribed medications for opioid use disorders ("MOUD"; e.g., buprenorphine [BUP]) to mitigate the harmful effects of abused opioids. However, the consequences of exposure to synthetic opioids, particularly BUP, during gestation on fetal neurodevelopment and long-term outcomes are poorly understood. Further, despite the known adverse effects of opioids on maternal care, many preclinical and clinical studies investigating the effects of gestational opioid exposure on offspring outcomes fail to report on maternal care behaviors. Considering that offspring outcomes are heavily dependent upon the quality of maternal care, it is important to evaluate the effects of gestational opioid exposure in the context of the mother-infant dyad. This review compares offspring outcomes after prenatal opioid exposure and after reduced maternal care and integrates this information to potentially identify common underlying mechanisms. We explore whether adverse outcomes after gestational BUP exposure are due to direct effects of opioids in utero, deficits in maternal care, or a combination of both factors. Finally, suggestions for improving preclinical models of prenatal opioid exposure are provided to promote more translational studies that can help to improve clinical outcomes for opioid-dependent mothers.
Collapse
Affiliation(s)
- Abigail M Myers
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Rung JM, Kidder QA, Horta M, Nazarloo HP, Carter CS, Berry MS, Ebner NC. Associations between alcohol use and peripheral, genetic, and epigenetic markers of oxytocin in a general sample of young and older adults. Brain Behav 2022; 12:e2425. [PMID: 35146961 PMCID: PMC8933764 DOI: 10.1002/brb3.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Human and nonhuman animal research suggests that greater oxytocin (OT) activity is protective against harmful substance use. Most research on this topic is preclinical, with few studies evaluating the association between substance use and individual differences in the human OT system. The present study sought to fill this gap by evaluating the relationship between alcohol use and multiple biological measures of OT activity in an overall low to moderate-drinking sample. METHOD As part of a larger study, generally healthy young (n = 51) and older (n = 53) adults self-reported whether they regularly used alcohol and how much alcohol they consumed per week. Participants also provided blood samples from which peripheral OT, and in an age-heterogeneous subset of participants (n = 56) variation in the oxytocin receptor gene (the OXTR rs53576 polymorphism) and OXTR DNA methylation levels (at cytosine-guanine dinucleotide sites -860, -924, -934), were obtained. RESULTS A-allele carriers of the OXTR rs53579 polymorphism were less likely to regularly consume alcohol. Among regular alcohol consumers, number of alcoholic drinks per week was positively associated with peripheral OT in regression models excluding observations of high influence (postdiagnostic models). Number of alcoholic drinks per week was consistently negatively associated with OXTR DNA methylation at site -860; and with OXTR DNA methylation at site -924 in postdiagnostic models. CONCLUSIONS The significant associations between alcohol use and individual differences in OT activity support the involvement of the OT system in alcohol use, which most likely reflect the role of OT when alcohol use is under control of its rewarding properties and/or the acute impacts of alcohol on the OT system. Additional research with markers of OT activity and alcohol use, particularly longitudinal, is needed to clarify the bidirectional effects of OT and alcohol use in moderate to harmful drinking and dependence.
Collapse
Affiliation(s)
- Jillian M Rung
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida, Gainesville, Florida, USA.,Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA
| | - Quintin A Kidder
- Department of Psychology, University of Florida, Gainesville, Florida, USA
| | - Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - H P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana, USA.,Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana, USA.,Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith S Berry
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA.,Pain Research and Intervention Center of Excellence (PRICE), College of Medicine, Clinical and Translational Science Institute (CTSI), University of Florida, Gainesville, Florida, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, Florida, USA.,Pain Research and Intervention Center of Excellence (PRICE), College of Medicine, Clinical and Translational Science Institute (CTSI), University of Florida, Gainesville, Florida, USA.,Department of Aging & Geriatric Research, Institute on Aging, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Seraphin SB, Sanchez MM, Whitten PL, Winslow JT. The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta). Horm Behav 2022; 137:105078. [PMID: 34823146 PMCID: PMC11302405 DOI: 10.1016/j.yhbeh.2021.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) is a critical neuromodulator of behavior. With propensities for addiction, hyper-activity, cognitive impairment, aggression, and social subordinance, monkeys enduring early maternal deprivation evoke human disorders involving dopaminergic dysfunction. To examine whether DA system alterations shape the behavioral correlates of adverse rearing, male monkeys (Macaca mulatta) were either mother-reared (MR: N = 6), or separated from their mothers at birth and nursery-reared (NR: N = 6). Behavior was assessed during 20-minute observations of subjects interacting with same- or differently-reared peers. Cerebrospinal fluid (CSF) biogenic amines, and serum testosterone (T), cortisol (CORT), and prolactin (PRL) were collected before and after pharmacologic challenge with saline or the DA receptor-2 (DRD2) antagonist Raclopride (RAC). Neuropeptide correlations observed in MR were non-existent in NR monkeys. Compared to MR, NR showed reduced DA tone; higher basal serum T; and lower CSF serotonin (5-HT). RAC increased PRL, T and CORT, but the magnitude of responses varied as a function of rearing. Levels of PRL significantly increased following RAC in MR, but not NR. Elevations in T following RAC were only significant among MR. Contrastingly, the net change (RAC CORT - saline CORT) in CORT was greater in NR than MR. Finally, observations conducted during the juvenile phase in a novel play-arena revealed more aggressive, self-injurious, and repetitive behaviors, which negatively correlated with indexes of dopaminergic tone in NR monkeys. In conclusion, early maternal deprivation alters brain DA systems, and thus may be associated with characteristic cognitive, social, and addiction outcomes.
Collapse
Affiliation(s)
- Sally B Seraphin
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States.
| | - Mar M Sanchez
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322-1003, United States
| | - Patricia L Whitten
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States
| | - James T Winslow
- NIMH IRP Neurobiology Primate Core, NIHAC Bldg. 110, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892-0001, United States
| |
Collapse
|
4
|
Shichiri M, Ishida N, Aoki Y, Koike T, Hagihara Y. Stress-activated leukocyte 12/15-lipoxygenase metabolite enhances struggle behaviour and tocotrienols relieve stress-induced behaviour alteration. Free Radic Biol Med 2021; 175:171-183. [PMID: 34474105 DOI: 10.1016/j.freeradbiomed.2021.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Stress induces emotional arousal causing anxiety, irritability, exaggerated startle behaviour, and hypervigilance observed in patients with trauma and stress-related mental disorders, including acute stress disorder and post-traumatic stress disorder. Central norepinephrine release promotes stress-induced emotional arousal. However, the regulator of emotional arousal remains unknown. Here, we show that the arachidonate-derived metabolite produced by stress-activated leukocyte 12/15-lipoxygenase is remarkably elevated in the plasma and upregulates the central norepinephrine release, resulting in the enhancement of the struggle behaviour (= escape behaviour) in the tail suspension test. Struggle behaviour is mimicking a symptom of emotional arousal. This stress-induced struggle behaviour was absent in 12/15-lipoxygenase deficient mice; however, intravenous administration of a 12/15-lipoxygenase metabolite to these mice after stress exposure rekindled the struggle behaviour. Furthermore, tocotrienols and geranylgeraniol reduced stress-induced 12/15-lipoxygenase metabolite production and suppressed the struggle behaviour. Our findings indicate that arachidonate-derived 12/15-lipoxygenase metabolite is involved in the regulation of stress-enhanced central norepinephrine release and struggle behaviour. In addition, we propose 12/15-lipoxygenase as a potential therapeutic target for the treatment of emotional arousal observed in stress-related mental disorders.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8562, Japan.
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Yoshinori Aoki
- Healthcare Solutions Unit, Life Solutions Sector, Amenity Life Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Taisuke Koike
- Strategy Department, Advanced Solutions Planning Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
5
|
Onaka T, Takayanagi Y. The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol 2021; 33:e13049. [PMID: 34713517 PMCID: PMC9286573 DOI: 10.1111/jne.13049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Early-life experience influences social and emotional behaviour in adulthood. Affiliative tactile stimuli in early life facilitate the development of social and emotional behaviour, whereas early-life adverse stimuli have been shown to increase the risk of various diseases in later life. On the other hand, oxytocin has been shown to have organizational actions during early-life stages. However, the detailed mechanisms of the effects of early-life experience and oxytocin remain unclear. Here, we review the effects of affiliative tactile stimuli during the neonatal period and neonatal oxytocin treatment on the activity of the oxytocin-oxytocin receptor system and social or emotional behaviour in adulthood. Both affiliative tactile stimuli and early-life adverse stimuli in the neonatal period acutely activate the oxytocin-oxytocin receptor system in the brain but modulate social behaviour and anxiety-related behaviour apparently in an opposite direction in adulthood. Accumulating evidence suggests that affiliative tactile stimuli and exogenous application of oxytocin in early-life stages induce higher activity of the oxytocin-oxytocin receptor system in adulthood, although the effects are dependent on experimental procedures, sex, dosages and brain regions examined. On the other hand, early-life stressful stimuli appear to induce reduced activity of the oxytocin-oxytocin receptor system, possibly leading to adverse actions in adulthood. It is possible that activation of a specific oxytocin system can induce beneficial actions against early-life maltreatments and thus could be used for the treatment of developmental psychiatric disorders.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| |
Collapse
|
6
|
Sawyer KM, Zunszain PA, Dazzan P, Pariante CM. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 2019; 24:1157-1177. [PMID: 30283036 DOI: 10.1038/s41380-018-0265-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.
Collapse
Affiliation(s)
- Kristi M Sawyer
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
7
|
Baracz SJ, Everett NA, Cornish JL. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neurosci Biobehav Rev 2018; 110:114-132. [PMID: 30172802 DOI: 10.1016/j.neubiorev.2018.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Early life trauma is strongly associated with an increased vulnerability to abuse illicit drugs and the impairment of neural development. This includes alterations to the development of the oxytocin system, which plays a pivotal role in the regulation of social behaviours and emotion. Dysregulation of this important system also contributes to increased susceptibility to develop drug addiction. In this review, we provide an overview of the animal models of early life stress that are widely used, and discuss the impact that early life stress has on drug-taking behaviour in adolescence and adulthood in both sexes. We link this to the changes that early life stress has on the endogenous oxytocin system, and how exogenously administered oxytocin may help to re-establish functioning of the system, and in turn, reduce drug-taking behaviour.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
8
|
O'Mahony SM, Clarke G, Dinan TG, Cryan JF. Irritable Bowel Syndrome and Stress-Related Psychiatric Co-morbidities: Focus on Early Life Stress. Handb Exp Pharmacol 2017; 239:219-246. [PMID: 28233180 DOI: 10.1007/164_2016_128] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome is a functional gastrointestinal disorder, with stress playing a major role in onset and exacerbation of symptoms such as abdominal pain and altered bowel movements. Stress-related disorders including anxiety and depression often precede the development of irritable bowel syndrome and vice versa. Stressor exposure during early life has the potential to increase an individual's susceptibility to both irritable bowel syndrome and psychiatric disease indicating that there may be a common origin for these disorders. Moreover, adverse early life events significantly impact upon many of the communication pathways within the brain-gut-microbiota axis, which allows bidirectional interaction between the central nervous system and the gastrointestinal tract. This axis is proposed to be perturbed in irritable bowel syndrome and studies now indicate that dysfunction of this axis is also seen in psychiatric disease. Here we review the co-morbidity of irritable bowel syndrome and psychiatric disease with their common origin in mind in relation to the impact of early life stress on the developing brain-gut-microbiota axis. We also discuss the therapeutic potential of targeting this axis in these diseases.
Collapse
Affiliation(s)
- Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. .,APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Kim S, Kwok S, Mayes LC, Potenza MN, Rutherford HJV, Strathearn L. Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Ann N Y Acad Sci 2016; 1394:74-91. [PMID: 27508337 DOI: 10.1111/nyas.13140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Substance addiction may follow a chronic, relapsing course and critically undermine the physical and psychological well-being of the affected individual and the social units of which the individual is a member. Despite the public health burden associated with substance addiction, treatment options remain suboptimal, with relapses often seen. The present review synthesizes growing insights from animal and human research to shed light upon developmental and neurobiological pathways that may increase susceptibility to addiction. We examine the dopamine system, the oxytocin system, and the glucocorticoid system, as they are particularly relevant to substance addiction. Our aim is to delineate how early adverse experience may induce long-lasting alterations in each of these systems at molecular, neuroendocrine, and behavioral levels and ultimately lead to heightened vulnerability to substance addiction. We further discuss how substance addiction in adulthood may increase the risk of suboptimal caregiving for the next generation, perpetuating the intergenerational cycle of early adverse experiences and addiction.
Collapse
Affiliation(s)
- Sohye Kim
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kwok
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Linda C Mayes
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Marc N Potenza
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut.,Departments of Psychiatry and Neuroscience and the National Center on Addiction and Substance Abuse (CASAColumbia), Yale University School of Medicine, New Haven, Connecticut.,Connecticut Mental Health Center, New Haven, Connecticut
| | | | - Lane Strathearn
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Attachment and Neurodevelopment Laboratory, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.,Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
10
|
Sharma A, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Buzoianu AD, Sharma HS. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron. Mol Neurobiol 2015; 52:867-81. [PMID: 26133300 DOI: 10.1007/s12035-015-9236-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 12/28/2022]
Abstract
Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB disruption and brain pathology, (ii) nanoparticles exacerbate SD-induced brain damage, and (iii) serotonin 5-HT3 receptor antagonist ondansetron is neuroprotective in SD that is further potentiated byTiO2-nanowired delivery, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Murgatroyd CA, Peña CJ, Podda G, Nestler EJ, Nephew BC. Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care. Neuropeptides 2015; 52:103-11. [PMID: 26049556 PMCID: PMC4537387 DOI: 10.1016/j.npep.2015.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
Exposures to various types of early life stress can be robust predictors of the development of psychiatric disorders, including depression and anxiety. The objective of the current study was to investigate the roles of the translationally relevant targets of central vasopressin, oxytocin, ghrelin, orexin, glucocorticoid, and the brain-derived neurotrophic factor (BDNF) pathway in an early chronic social stress (ECSS) based rodent model of postpartum depression and anxiety. The present study reports novel changes in gene expression and extracellular signal related kinase (ERK) protein levels in the brains of ECSS exposed rat dams that display previously reported depressed maternal care and increased maternal anxiety. Decreases in oxytocin, orexin, and ERK proteins, increases in ghrelin receptor, glucocorticoid and mineralocorticoid receptor mRNA levels, and bidirectional changes in vasopressin underscore related work on the adverse long-term effects of early life stress on neural activity and plasticity, maternal behavior, responses to stress, and depression and anxiety-related behavior. The differences in gene and protein expression and robust correlations between expression and maternal care and anxiety support increased focus on these targets in animal and clinical studies of the adverse effects of early life stress, especially those focusing on depression and anxiety in mothers and the transgenerational effects of these disorders on offspring.
Collapse
Affiliation(s)
- Christopher A Murgatroyd
- Manchester Metropolitan University School of Healthcare Science, All Saints Building, Manchester M15 6BH, UK
| | - Catherine J Peña
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Giovanni Podda
- Manchester Metropolitan University School of Healthcare Science, All Saints Building, Manchester M15 6BH, UK
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Benjamin C Nephew
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, United States.
| |
Collapse
|
12
|
Alves E, Fielder A, Ghabriel N, Sawyer M, Buisman-Pijlman FTA. Early social environment affects the endogenous oxytocin system: a review and future directions. Front Endocrinol (Lausanne) 2015; 6:32. [PMID: 25814979 PMCID: PMC4356154 DOI: 10.3389/fendo.2015.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Endogenous oxytocin plays an important role in a wide range of human functions including birth, milk ejection during lactation, and facilitation of social interaction. There is increasing evidence that both variations in the oxytocin receptor (OXTR) and concentrations of oxytocin are associated with differences in these functions. The causes for the differences that have been observed in tonic and stimulated oxytocin release remain unclear. Previous reviews have suggested that across the life course, these differences may be due to individual factors, e.g., genetic variation (of the OXTR), age or sex, or be the result of early environmental influences, such as social experiences, stress, or trauma partly by inducing epigenetic changes. This review has three aims. First, we briefly discuss the endogenous oxytocin system, including physiology, development, individual differences, and function. Second, current models describing the relationship between the early life environment and the development of the oxytocin system in humans and animals are discussed. Finally, we describe research designs that can be used to investigate the effects of the early environment on the oxytocin system, identifying specific areas of research that need further attention.
Collapse
Affiliation(s)
- Emily Alves
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Emily Alves and Femke T.A. Buisman-Pijlman, Adelaide University, 30 Frome Road, Adelaide, SA 5000, Australia e-mail: ;
| | - Andrea Fielder
- School of Midwifery, University of South Australia, Adelaide, SA, Australia
| | - Nerelle Ghabriel
- School of Midwifery, University of South Australia, Adelaide, SA, Australia
- School of Psychology, University of South Australia, Adelaide, SA, Australia
| | - Michael Sawyer
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- Research and Evaluation Unit, Women’s and Children’s Health Network, Adelaide, SA, Australia
| | - Femke T. A. Buisman-Pijlman
- School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Emily Alves and Femke T.A. Buisman-Pijlman, Adelaide University, 30 Frome Road, Adelaide, SA 5000, Australia e-mail: ;
| |
Collapse
|