1
|
Hosseinzadeh Y, Ghasemzadeh Rahbardar M, Mehri S, Razavi BM, Hosseinzadeh H. Protective effect of aspirin and gentisic acid, a plant-derived phenolic acid, on acrylamide-induced neurotoxicity by inhibiting apoptosis and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03498-6. [PMID: 39367985 DOI: 10.1007/s00210-024-03498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Acrylamide (ACR) is a toxic agent for humans and animals. Gentisic acid, an aspirin metabolite, has antioxidant activity. Therefore, the present study investigated the probable protective effects of aspirin and gentisic acid on ACR-induced neurotoxicity in PC12 cells and rats. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the effects of aspirin and gentisic acid (1.25, 2.5, 5 µM) on ACR (5 mM) toxicity. Male Wistar rats were randomly divided into 13 groups: (1) Control group, (2) ACR (50 mg/kg, 11 days, i.p.), (3-5) ACR + aspirin (25, 50, 75 mg/kg, 11 days, p.o.), (6-8) ACR + gentisic acid (25, 50, 75 mg/kg, 11 days, p.o.), (9) ACR + vitamin E (200 mg/kg, every other day, i.p.), (10, 11) Aspirin (75, 100 mg/kg, 11 days, p.o.), (12, 13) Gentisic acid (75, 100 mg/kg, 11 days, p.o.). Behavioral tests were assessed on the final day of the study. In the cerebral cortex, malondialdehyde (MDA), glutathione (GSH), cleaved-caspase-3, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein levels were evaluated. When compared with the ACR group, aspirin (2.5, 5 µM) and gentisic acid (2.5 µM) significantly enhanced cell viability. In comparison to the control group, ACR induced severe motor impairment, elevated MDA, cleaved-caspase-3, LC3 II/I ratio, and decreased GSH levels in the cerebral cortex of rats. ACR-induced changes were significantly reversed by aspirin and gentisic acid (25 mg/kg). Oxidative stress, apoptosis, and autophagy play important roles in the neurotoxicity of ACR. Aspirin and gentisic acid significantly reduced ACR-induced toxicity by inhibiting the mentioned mechanisms.
Collapse
Affiliation(s)
| | | | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Qiao L, Yi S, Li T, Pan X, Wang G, Liu X, Li M, Min J, Le H, Tang Z. Calpeptin improves the cognitive function in Alzheimer's disease-like complications of diabetes mellitus rats by regulating TXNIP/NLRP3 inflammasome. J Diabetes Investig 2024; 15:1365-1376. [PMID: 39171660 PMCID: PMC11442751 DOI: 10.1111/jdi.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
AIMS Diabetes mellitus (DM) is closely associated with Alzheimer's disease (AD), and is considered an accelerator of AD. Our previous study has confirmed that the Calpain inhibitor Calpeptin may alleviate AD-like complications of diabetes mellitus. This work further investigated its underlying mechanism. MATERIALS AND METHODS Diabetes mellitus rat model was constructed by a high-fat and high-sugar diet combined with streptozotocin, followed by the administration of Calpeptin. Moreover, rats were micro-injected with LV-TXNIP-OE/vector into the CA1 region of the hippocampus one day before streptozotocin injection. The Morris water maze test assessed the spatial learning and memory ability of rats. Immunohistochemistry and western blotting detected the expression of the pericyte marker PDGFRβ, tight junction proteins occludin and ZO-1, calpain-1, calpain-2, APP, Aβ, Aβ-related, and TXNIP/NLRP3 inflammasome-related proteins. Immunofluorescence staining examined the blood vessel density and neurons in the hippocampus. Evans blue extravasation and fluorescence detected the permeability of the blood-brain barrier (BBB) in rats. Additionally, the oxidative stress markers and inflammatory-related factors were assessed by enzyme-linked immunosorbent assay. RESULTS Calpeptin effectively reduced the expression of Calpain-2 and TXNIP/NLRP3 inflammasome-related proteins, improved the decreased pericyte marker (PDGFR-β) and cognitive impairment in hippocampus of DM rats. The neuronal loss, microvessel density, permeability of BBB, Aβ accumulation, inflammation, and oxidative stress injury in the hippocampus of DM rats were also partly rescued by calpeptin treatment. The influence conferred by calpeptin treatment was reversed by TXNIP overexpression. CONCLUSIONS These data demonstrated that calpeptin treatment alleviated AD-like symptoms in DM rats through regulating TXNIP/NLRP3 inflammasome. Thus, calpeptin may be a potential drug to treat AD-like complications of diabetes mellitus.
Collapse
Affiliation(s)
- Luyao Qiao
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Shouqin Yi
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tianpei Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xin Pan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gege Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Min Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Huahui Le
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Zhenyu Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Zhu WX, Xi Y, Li F, Jiao WE, Li ZJ, Chen SM, Kong YG, Xu Y, Deng YQ, Zuo JJ, Tao ZZ. Calpeptin may reverse glucocorticoid-resistance of allergic rhinitis associated with cigarette smoke exposure by down-regulating interferon regulatory factor 1. Heliyon 2023; 9:e17316. [PMID: 37449098 PMCID: PMC10336445 DOI: 10.1016/j.heliyon.2023.e17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cigarette smoke exposure is an important factor in chronic inflammation in patients with allergic rhinitis (AR); however, the relationship between cigarette smoke and AR-related glucocorticoid resistance requires further study. In mice, calpeptin significantly reduces inflammation of the lower respiratory tract caused by cigarette smoke, but whether it can treat glucocorticoid-resistant AR caused by cigarette smoke requires further research. In this study, we confirmed that cigarette smoke exposure can aggravate the Th2 inflammatory response in AR leading to glucocorticoid resistance. The underlying mechanism may be related to decreased expression of DNA methyltransferase 3a (Dnmt3a), and increased expression of interferon regulatory factor 1 (IRF1). In addition, we found that calpeptin can inhibit the expression of IRF1 and thus treat AR-associated glucocorticoid resistance in rats exposed to cigarette smoke. These data suggest that calpeptin may downregulate IRF1 and therefore treat glucocorticoid resistance in AR-associated with cigarette smoke exposure.
Collapse
Affiliation(s)
- Wen-Xuan Zhu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yang Xi
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fen Li
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi-Jing Li
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Shi-Ming Chen
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu Xu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu-Qin Deng
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jing-Jing Zuo
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
4
|
Mediouni S, Mou H, Otsuka Y, Jablonski JA, Adcock RS, Batra L, Chung DH, Rood C, de Vera IMS, Rahaim R, Ullah S, Yu X, Getmanenko YA, Kennedy NM, Wang C, Nguyen TT, Hull M, Chen E, Bannister TD, Baillargeon P, Scampavia L, Farzan M, Valente ST, Spicer TP. Identification of potent small molecule inhibitors of SARS-CoV-2 entry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:8-19. [PMID: 35058179 PMCID: PMC8577999 DOI: 10.1016/j.slasd.2021.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.
Collapse
Affiliation(s)
- Sonia Mediouni
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Huihui Mou
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Yuka Otsuka
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Joseph Anthony Jablonski
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Lalit Batra
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, KY 40202, USA
| | - Christopher Rood
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ronald Rahaim
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Sultan Ullah
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Xuerong Yu
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Yulia A Getmanenko
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Nicole M Kennedy
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Chao Wang
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Tu-Trinh Nguyen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Mitchell Hull
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Emily Chen
- CALIBR, Scripps Research, 11119N Torrey Pines Rd, La Jolla, CA 9203, USA
| | - Thomas D Bannister
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Pierre Baillargeon
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Michael Farzan
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Susana T Valente
- Scripps Research, Department of Immunology and Microbiology, Scripps Research, Jupiter, FL 33458, USA
| | - Timothy P Spicer
- Scripps Research, Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
5
|
Zhao S, Zhong H, Geng C, Xue H, Wang C, Sun W, Dang R, Han W, Jiang P. Comprehensive analysis of metabolic changes in rats exposed to acrylamide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117591. [PMID: 34153608 DOI: 10.1016/j.envpol.2021.117591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (ACR) is a widely used environmentally hazardous compound that is known to be neurotoxic, genotoxic, carcinogenic, and reproductive toxicity. It is widely present in soil, water, agents used in chemical industries, and food. It can be distributed to all organs and tissues, and can cause damage to various human systems and those of other animals. Previous metabolomics studies have mainly focused on metabolites in serum and urine, but have lacked comprehensive analysis of major organs and tissues. In the current study, a gas chromatography-massspectrometry method was used to investigate mechanisms underlying organ toxicity, in an effort to identify potentially sensitive biomarkers in the main target tissues of rats after ACR exposure. Male Sprague-Dawley rats were assigned to two groups; a control group and a group treated with 20 mg kg-1 ACR intragastrically for 6 weeks. Metabolite changes in the two groups were statistically analyzed. The respective numbers of altered metabolites in the hippocampus, cortex, kidney, serum, heart, liver, and kidney fat were 21, 21, 17, 5, 15, 14, and 6. There were 14 metabolic pathways related to amino acid, fatty acid, purine, and energy metabolism, revealing that the toxic mechanism of ACR may involve oxidative stress, inflammation, and amino acid metabolism and energy disorders.
Collapse
Affiliation(s)
- Shiyuan Zhao
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Haitao Zhong
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Chunmei Geng
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Changshui Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, 272000, China
| | - Wenxue Sun
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Ruili Dang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Wenxiu Han
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical University, Jining, 272000, China; Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, 272000, China.
| |
Collapse
|
6
|
Bai Y, Gu Z, Zhang T, Luo Y, Zhang C, Luo L, Ma Y, Liu J. Toxic effects of subacute exposure to acrylamide on motor endplates of the gastrocnemius in rats. Toxicology 2021; 462:152934. [PMID: 34509579 DOI: 10.1016/j.tox.2021.152934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (ACR) is a recognized toxin that is known to induce neurotoxicity in humans and experimental animals. This study aimed to investigate the toxic effects of subacute exposure of the motor endplate (MEP) of the gastrocnemius in rats to ACR. All rats were randomly divided into control, 9, 18, and 36 mg/kg ACR groups, and ACR was administered by gastric gavage for 21 days. The behavioral tests were performed weekly. On the 22nd day, the wet weight of the gastrocnemius was measured. The changes in muscle fiber structure, nerve endings, and MEP in the gastrocnemius were examined by hematoxylin-eosin (HE) and gold chloride staining. Acetylcholinesterase (AChE) content in the gastrocnemius was detected by AChE staining. The expression of AChE and calcitonin gene-related peptide was detected by immunohistochemistry and western blot. Rats exposed to ACR showed a significant increase in gait scores and hind limb splay distance compared with the control group, and the wet weight of the gastrocnemius was reduced, HE staining showed that the muscle fiber structure of the gastrocnemius became thin and the arrangement was dense with nuclear aggregation, gold chloride staining showed that nerve branches decreased and became thin, nerve fibers became short and light, the number of MEPs was decreased, the staining became light, and the structure was not clear. AChE staining showed that the number of MEPs was significantly reduced after exposure to ACR, the shape became small, and the AChE content decreased in a dose-dependent manner. Immunohistochemistry and western blot analysis results of the expression levels of AChE and CGRP showed a decreasing trend as compared to the control group with increasing ACR exposure dose. The reduction in protein levels may be the mechanism by which ACR has a toxic effect on the MEP in the gastrocnemius of rats.
Collapse
Affiliation(s)
- Yanxian Bai
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ziting Gu
- Guangdong Medical Academic Exchange Center, Guangzhou 510006, PR China
| | - Tong Zhang
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuyou Luo
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunmei Zhang
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Luo
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxin Ma
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Liu
- Department of Basic Medicine, College of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Wang Y, Duan L, Zhang X, Jiao Y, Liu Y, Dai L, Yan H. Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112691. [PMID: 34450424 DOI: 10.1016/j.ecoenv.2021.112691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (ACR) is a widely used chemical compound that has neurotoxicity in human, but whether ACR could impair the cerebellum and the related mechanism were still unknown. This study aimed to observe the changes in behavioral performance and cerebellar morphology caused by chronic ACR exposure, and to evaluate its influence on apoptosis, endoplasmic reticulum stress (ERS) and autophagy. Rats were treated with 0, 0.5 and 5 mg/kg ACR by drinking water for 12 months. Results showed that 5 mg/kg ACR treatment damaged the gait, balance ability, hindlimb muscle strength and motor coordination ability of rats. The results of hematoxylin and eosin and Nissl staining indicated that ACR impaired the structures of all three layers of the cerebellum, especially the Purkinje cell layer, showing abnormal morphology with nucleus condensation and pyknosis. Accumulation of autophagosomes, dilated endoplasmic reticulum and swollen mitochondria were observed in neurons under transmission electron microscopy. The enhanced apoptotic rates and the increased Bax expression indicated the elevated level of apoptosis. The results of Western blot showed that ACR treatment elevated protein levels of Beclin1, LC3-II/LC3-I, p-PERK/t-PERK, ATF4 and CHOP, indicating the initiation of autophagy, the activation of PERK pathway in ERS. This work helps to demonstrate the ACR neurotoxicity on cerebellum under chronic treatment and its underlying mechanism.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lian Duan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China.
| |
Collapse
|
8
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Bin-Jumah M, Abdel-Fattah AFM, Saied EM, El-Seedi HR, Abdel-Daim MM. Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13031-13046. [PMID: 33484463 DOI: 10.1007/s11356-020-12287-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/28/2020] [Indexed: 05/10/2023]
Abstract
Acrylamide is a chemical monomer; its polymer compounds are used in the manufacture of plastic, papers, adhesive tapes, dyes, and food packaging. Lately, scientists found that cooking (mainly roasting, baking, and frying) yields acrylamide. In addition to fried/baked potatoes, coffee and bakery products still contain substantial amounts of acrylamide. Acrylamide has toxic effects on different body systems include genitourinary, reproductive, nervous system, along with being a carcinogenic substance. The neurotoxicity of acrylamide includes central and peripheral neuropathy. In humans, the clinical manifestations include sensory or motor peripheral neuropathy, drowsiness, or cerebellar ataxia. Likewise, it presents with skeletal muscle weakness, hindlimb dysfunction, ataxia, and weight loss in animals. The suggested mechanisms for acrylamide neurotoxicity include direct inhibition of neurotransmission, cellular changes, inhibition of key cellular enzymes, and bonding of kinesin-based fast axonal transport. Moreover, it is suggested that acrylamide's molecular effect on SNARE core kinetics is carried out through the adduction of NSF and/or SNARE proteins. Lately, scientists showed disruption of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) cell signaling pathways in human differentiating neuroblastoma SH-SY5Y cells, exposed to acrylamide. Different treatment modalities have been revealed to shield against or hasten recovery from acrylamide-induced neuropathy in preclinical studies, including phytochemical, biological, and vitamin-based compounds. Still, additional studies are needed to elucidate the pathogenesis and to identify the best treatment modality.
Collapse
Affiliation(s)
- May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
10
|
Ghasemzadeh Rahbardar M, Hemadeh B, Razavi BM, Eisvand F, Hosseinzadeh H. Effect of carnosic acid on acrylamide induced neurotoxicity: in vivo and in vitro experiments. Drug Chem Toxicol 2020; 45:1528-1535. [DOI: 10.1080/01480545.2020.1845715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Batool Hemadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhao S, Sun H, Liu Q, Shen Y, Jiang Y, Li Y, Liu T, Liu T, Xu H, Shao M. Protective effect of seabuckthorn berry juice against acrylamide-induced oxidative damage in rats. J Food Sci 2020; 85:2245-2254. [PMID: 32579735 DOI: 10.1111/1750-3841.15313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Acrylamide (AA), classified as a probable carcinogen, can be neurotoxic, genotoxic, and can damage DNA. This study explored the ability of seabuckthorn berries juice (SBJ) to alleviate AA-induced toxic injury in rats. Twenty-four adult male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AA group (40 mg/kg), AA + SBJ (40 mg/kg AA and 5 mL/kg SBJ), and AA + vitamin C (VC) group (positive control group, 40 mg/kg AA and 100 mg/kg VC). At the end of the experiment, rats in AA group showed a marked decrease in the rate of weight gain, hind extremity abduction, and ataxia. Obvious anomalies were seen in plasma biochemical parameters (P < 0.05), and different degrees of injury were observed upon histological examination of five tissues (hippocampus, cerebellum, liver, small intestine, and kidney). Compared to the control group, levels of superoxide dismutase, catalase, and glutathione were significantly decreased, while malondialdehyde was elevated (P < 0.05). SBJ treatment reduced the abnormal of behavior, hematological index, antioxidant enzyme, and tissue damage caused by AA in rats. PRACTICAL APPLICATION: Seabuckthorn berries are wild berries rich in vitamin C and polyphenols, which have good antioxidant properties. In this experiment, SBJ has a significant alleviating effect on AA-induced oxidative damage in rats. Therefore, we speculate that SBJ may relieve the oxidative damage caused by diet or other forms of AA exposure in the general population. At the same time, this experiment also provides new ideas for alleviating AA-induced in vivo toxicity.
Collapse
Affiliation(s)
- Sijia Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyang Sun
- Author, Sun, is, with, China Institute to Veterinary Drug Control, Beijing, 100081, China
| | - Qingbo Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Shen
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yujun Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianxu Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Honghua Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Meili Shao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.,Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
12
|
Sui X, Yang J, Zhang G, Yuan X, Li W, Long J, Luo Y, Li Y, Wang Y. NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 2020; 432:152392. [PMID: 32014472 DOI: 10.1016/j.tox.2020.152392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Acrylamide (AA) constitutes an important industrial chemical agent and well-known neurotoxin. However, the mechanism underlying AA-mediated neurotoxicity is extremely complicated and controversial. In this study, we found that activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and its subsequent downstream inflammatory responses plays an important role in AA-induced neurotoxicity mechanisms. In vitro experiments revealed that AA (2.5 mM) induced BV2 microglial cytotoxicity and triggered NLRP3 inflammasome activation along with downstream proinflammatory cytokine interleukin-1β and interleukin-18 expression. Treatment with inhibitor or NLRP3 siRNA efficiently protected BV2 microglial cells against AA-induced cytotoxicity and reversed NLRP3 inflammasome activation and its mediated inflammatory reaction. Similarly, AA exposure (50 mg/kg) for 10 consecutive days caused significant activation of NLRP3 inflammasomes and neuroinflammation in C57BL/6 mice, whereas inhibiting these effects through specific NLRP3 inflammasome blocker MCC950 (5 mg/kg) intervention or NLRP3 knock-out significantly ameliorated AA-induced ataxia, cerebellar Purkinje cells degeneration, and apoptosis. Furthermore, we demonstrated that antagonism of NLRP3 could also up-regulate the Nrf2 signalling pathway and related antioxidant genes. In conclusion, our findings indicate that activation of the NLRP3 inflammasome pathway is involved in AA-induced neurotoxicity, whereas MCC950 treatment or NLRP3 knock-out could effectively protect against AA-induced neurotoxic injury through the inhibition of neuroinflammation and activation of the Nrf2 antioxidant pathway. Therefore, the NLRP3 inflammasome might serve as a promising therapeutic target, with drugs designed to specifically inhibit this pathway potentially providing new avenues for preventing or ameliorating AA poisoning.
Collapse
Affiliation(s)
- Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Guangzhou Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - XiaoFeng Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - WanHua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - JianHai Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yunfeng Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
13
|
Protective effect of calpeptin on acrylamide-induced microtubule injury in sciatic nerve. Toxicology 2018; 409:103-111. [DOI: 10.1016/j.tox.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/12/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
|
14
|
Su B, Guan Q, Wang M, Liu N, Wei X, Wang S, Yang X, Jiang W, Xu M, Yu S. Calpeptin is neuroprotective against acrylamide-induced neuropathy in rats. Toxicology 2018. [DOI: 10.1016/j.tox.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Sun G, Wang X, Li T, Qu S, Sun J. Taurine attenuates acrylamide-induced apoptosis via a PI3K/AKT-dependent manner. Hum Exp Toxicol 2018; 37:960327118765335. [PMID: 29607694 DOI: 10.1177/0960327118765335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a potent neurotoxic agent, acrylamide (ACR) is formed in food processing at higher temperature. Taurine (TAU), a nonessential amino acid, is used to cure neurodegenerative disorders, followed by activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. In this article, we certified that antiapoptotic efficacy of TAU in vivo and vitro. ACR-treated rats received TAU by drinking water 2 weeks after ACR intoxication. The results showed that in treated rats, TAU alleviated ACR-induced neuronal apoptosis, which was associated with the activation of PI3K/AKT signaling pathway. TAU attenuated apoptosis caused by ACR through observing terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, measure of protein expression of Bcl-2, Bax, and caspase 3 activity. TAU-induced antiapoptotic effect is PI3K/AKT-dependent, which was proved in ACR-intoxicated ventral spinal cord 4.1 cells in the presence of AKT inhibitor, MK-2206. Therefore, our results demonstrated that TAU-attenuated ACR-induced apoptosis in vivo through a PI3K/AKT-dependent manner provided new sights in the molecular mechanism of TAU protection against ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- G Sun
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - X Wang
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - T Li
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - S Qu
- 2 Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - J Sun
- 1 The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| |
Collapse
|
16
|
He Y, Tan D, Mi Y, Bai B, Jiang D, Zhou X, Ji S. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Hum Exp Toxicol 2017; 36:1087-1099. [PMID: 27920337 DOI: 10.1177/0960327116681648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acrylamide (ACR) is a chemical intermediate utilized in industry. ACR is also formed during heating of foods containing carbohydrates and amino acids. Therefore, humans are widely exposed to ACR, and ACR neurotoxicity in humans is a significant public health issue attracting wide attention. In this study, we investigated the potential neuroprotective effects of epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic compound in green tea, in PC12 cells treated with ACR. ACR-treated PC12 cells pretreated with various concentrations of EGCG (2.5, 5 and 10 μM) for 24 h had increased viability and acetylcholinesterase activity and reduced apoptosis and necrosis compared to cells exposed to ACR alone. EGCG reduced the expression of bax mRNA, decreased cytochrome c release, reduced intracellular calcium levels, inactivated caspase 3 and increased mitochondrial membrane potential, suggesting that EGCG prevents ACR-induced apoptosis through a mitochondrial-mediated pathway. In addition, EGCG inhibited the formation of reactive oxygen species and lipid peroxidation while enhancing superoxide dismutase activity and glutathione levels, thereby reducing oxidative stress. Our results indicate that pretreatment of PC12 cells with EGCG attenuates ACR-induced apoptosis by reducing oxidative stress. Therefore, drinking green tea may reduce nerve injury induced by ACR.
Collapse
Affiliation(s)
- Y He
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Tan
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - Y Mi
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - B Bai
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - D Jiang
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - X Zhou
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| | - S Ji
- College of Food, Shenyang Agricultural University, Shenhe District, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Al-Gholam MA, Nooh HZ, El-Mehi AE, El-Barbary AEM, Fokar AZE. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study. Anat Cell Biol 2016; 49:34-49. [PMID: 27051566 PMCID: PMC4819076 DOI: 10.5115/acb.2016.49.1.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord.
Collapse
Affiliation(s)
- Marwa A Al-Gholam
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Hanaa Zakaria Nooh
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Abeer E El-Mehi
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Abd El-Moneum El-Barbary
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Ahmed Zo El Fokar
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|