1
|
Chen H, Wusiman Y, Zhao J, Zhang W, Liu W, Wang S, Qian G, Zhang G, Le M, Dong X. Metabolomics analysis revealed the neuroprotective role of 2-phosphoglyceric acid in hypoxic-ischemic brain damage through GPX4/ACSL4 axis regulation. Eur J Pharmacol 2024; 971:176539. [PMID: 38565342 DOI: 10.1016/j.ejphar.2024.176539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a cerebral injury resulting from the combination of ischemia and hypoxia in neonatal brain tissue. Presently, there exists no efficacious remedy for HIBD. A mounting body of evidence indicates that dynamic metabolites formed during metabolic procedures assume a vital role in neuronal maturation and recuperation. However, it remains unclear whether any endogenous metabolites are involved in the pathogenesis of HIBD. Here, an untargeted metabolomics analysis was conducted by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry (GC/LC-MS) in OGD/R (oxygen-glucose deprivation/reoxygenation)-induced HT-22 cells. We observed that ferroptosis signaling plays an essential role in HI-induced neuronal injury. Interestingly, we also found that the differentially expressed metabolite, 2-phosphoglyceric acid, significantly improved the neuronal cell survival of OGD/R HT-22 cells by inhibiting ferroptosis. Moreover, 2-phosphoglyceric acid effectively rescued the cell activity of HT-22 cells treated with the ferroptosis inducer RSL-3. Furthermore, 2-phosphoglyceric acid alleviated cerebral infarction and reduced HIBD-induced neuronal cell loss of the central nervous system in neonatal rats by regulating GPX4 expression. Taken together, we found that 2-phosphoglyceric acid, which was downregulated in HT-22 cells induced by OGD/R, exerted neuronal protective effects on OGD/R-treated HT-22 cells and HIBD-induced neonatal rats by inhibiting hypoxic-ischemic-induced ferroptosis through the regulation of the GPX4/ACSL4 axis.
Collapse
Affiliation(s)
- Haocong Chen
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yimingjiang Wusiman
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wenyi Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wenjuan Liu
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shuyan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Gang Qian
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Meini Le
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Xiaohua Dong
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
2
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Huang X, Liu J, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons via sonic hedgehog signaling pathway. Cell Tissue Res 2019; 378:49-57. [PMID: 31016387 DOI: 10.1007/s00441-019-03018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Abstract
The aim of this paper is to investigate the potential beneficial effects of taurine in cochlear neural stem cell (NSC) transplantation and elucidate the underlying molecular mechanism. The NSC cells were isolated from neonatal Balb/c mice and an auditory neuropathy gerbil model was established by microinjection of ouabain. The spiral ganglion neurons (SGN) were characterized with immunofluorescence stained with Tuj1 antibody. Cell proliferation was determined by BrdU incorporation assay and the morphologic index was measured under the light microscope. The relative protein level was determined by immunoblotting. The hearing of the animal model was scored by click- and tone burst-evoked auditory brainstem response (ABR). Here we consolidated our previous finding that taurine stimulated SGN density and the proliferation index, which were completely abolished by Shh inhibitor, cyclopamine. Transplantation of cochlear NSCs combined with taurine significantly improved ouabain-induced auditory neuropathy in gerbils. In addition, cyclopamine antagonized taurine's effect on glutamatergic and GABAergic neuron population via suppression of VGLUT1 and GAT1 expression. Mechanistically, taurine evidently activated the Sonic HedgeHog pathway and upregulated Shh, Ptc-1, Smo and Gli-1 proteins, which were specifically blockaded by cyclopamine. Here, for the first time demonstrated we that co-administration with taurine significantly improved NSC transplantation and the Shh pathway was identified in this beneficial effect.
Collapse
Affiliation(s)
- Xinghua Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jiajia Liu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Weijing Wu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Peng Hu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Qin Wang
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
4
|
Huang X, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cells proliferation and differentiation to sprial gangli through activating sonic hedgehog signaling pathway. Organogenesis 2018; 14:147-157. [PMID: 30102120 DOI: 10.1080/15476278.2018.1477462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the molecular mechanism underlying taurine-stimulated proliferation and differentiation of cochlear neural stem cells (NSCs) and potential involvement of Sonic Hedgehog (Shh) pathway. The NSCs were characterized with immunofluorescence stained with nestin antibody. Cell viability was determined by MTT assay. The relative proliferation was measured by BrdU incorporation assay. The morphologic index was measured under light microscope. The relative protein level was determined by immunoblotting. Here we presented our findings that taurine stimulated proliferation and neurite outgrowth of NSCs, which was completely abolished by Shh inhibitor cyclopamine. In addition, cyclopamine antagonized taurine's effect on glutamatergic and GABAergic neuron population via suppressing expressions of Ptc-1, Smo and Gli-1. Our data supported the critical role of Shh pathway underlying the protective effect of taurine on auditory neural system.
Collapse
Affiliation(s)
- Xinghua Huang
- a Department of Ultrasound Diagnosis, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Weijing Wu
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Peng Hu
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Qin Wang
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| |
Collapse
|