1
|
Zhang J, Chang Q, Rizzello L, Wu Y. Research progress on the effects and mechanisms of anesthetics on neural stem cells. IBRAIN 2022; 8:453-464. [PMID: 37786590 PMCID: PMC10528967 DOI: 10.1002/ibra.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 10/04/2023]
Abstract
Exposure to anesthetic drugs has been proven to seriously affect developing animals in terms of neural stem cells' (NSCs') proliferation, differentiation, and apoptosis. This can severely hamper the development of physiological learning and memory skills. Studies on the effects of anesthetics on NSCs' proliferation and differentiation are thus reviewed here, with the aim to highlight which specific drug mechanisms are the least harmful to NSCs. PubMed has been used as the preferential searching database of relevant literature to identify studies on the effects and mechanisms of NSCs' proliferation and differentiation. It was concluded that propofol and sevoflurane may be the safest options for NSCs during pregnancy and in pediatric clinical procedures, while dexmedetomidine has been found to reduce opioid-related damage in NSCs. It was also found that the growth environment may impact neurodevelopment even more than narcotic drugs. Nonetheless, the current scientific literature available further highlights how more extensive clinical trials are absolutely required for corroborating the conclusion drawn here.
Collapse
Affiliation(s)
- Ji Zhang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Quan‐Yuan Chang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- National Institute of Molecular Genetics (INGM)MilanItaly
| | - You Wu
- Department of Family PlanningThe Affiliated Hospital of Zunyi Medical UniversityGuizhouZunyiChina
| |
Collapse
|
2
|
Farrokhfar S, Tiraihi T, Movahedin M, Azizi H. Morphine Induces Differential Gene Expression in Transdifferentiated Neuron-Like Cells from Adipose-Derived Stem Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Ebrahimi V, Tarhriz V, Talebi M, Rasouli A, Farjami A, Razi Soofiyani S, Soleimanian A, Forouhandeh H. A new insight on feasibility of pre-, pro-, and synbiotics-based therapies in Alzheimer’s disease. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022. [DOI: 10.4103/jrptps.jrptps_170_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Bagheri Y, Sadigh-Eteghad S, Fathi E, Mahmoudi J, Abdollahpour A, Namini NJ, Malekinejad Z, Mokhtari K, Barati A, Montazersaheb S. Hepatoprotective effects of sericin on aging-induced liver damage in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2441-2450. [PMID: 34605941 DOI: 10.1007/s00210-021-02160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Aging is a physiological process in which there is a progressive decline of function in multiple organs such as the liver. The development of natural therapies, such as sericin, for delaying age-associated diseases is of major interest in this regard. Twenty-seven mice were divided into three groups of nine, including young control group (8 weeks, received normal saline), aged control group (24 months, received normal saline), and sericin-treated aged mice (24 months, received sericin at dose 100 mg/kg/day) via oral administration for 14 days. The liver enzymes in serum and oxidative stress markers in liver tissue were evaluated using spectrophotometric/ELISA methods. Apoptotic proteins, pro-inflammatory cytokines, COX2, JNK, and P-38 levels were assessed by western blot analysis. β-galactosidase expression was determined by a qRT-PCR method. The findings showed that 100 mg/kg of sericin reduced liver enzymes in aged mice. Antioxidant capacity in treated aged mice showed an improvement in all indexes in the liver tissue. Also, sericin administration declined pro-inflammatory markers to varying degrees in aged-treated mice. Sericin also increased the expression level of Bcl-2 and decreased the expression level of Bax and cleaved caspase-3.In addition, treatment with sericin suppressed protein expression of p-JNK and p-JNK/JNK. Collectively, these findings would infer that sericin administration may have a hepatoprotective effect in aging-induced liver damage in mice.
Collapse
Affiliation(s)
- Yasin Bagheri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdollah Abdollahpour
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nasim Jalili Namini
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Zahra Malekinejad
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Kiarash Mokhtari
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Holan V, Cechova K, Zajicova A, Kossl J, Hermankova B, Bohacova P, Hajkova M, Krulova M, Svoboda P, Javorkova E. The Impact of Morphine on the Characteristics and Function Properties of Human Mesenchymal Stem Cells. Stem Cell Rev Rep 2019; 14:801-811. [PMID: 30136142 DOI: 10.1007/s12015-018-9843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphine is an analgesic drug therapeutically administered to relieve pain. However, this drug has numerous side effects, which include impaired healing and regeneration after injuries or tissue damages. It suggests negative effects of morphine on stem cells which are responsible for tissue regeneration. Therefore, we studied the impact of morphine on the properties and functional characteristics of human bone marrow-derived mesenchymal stem cells (MSCs). The presence of μ-, δ- and κ-opioid receptors (OR) in untreated MSCs, and the enhanced expression of OR in MSCs pretreated with proinflammatory cytokines, was demonstrated using immunoblotting and by flow cytometry. Morphine modified in a dose-dependent manner the MSC phenotype, inhibited MSC proliferation and altered the ability of MSCs to differentiate into adipocytes or osteoblasts. Furthermore, morphine rather enhanced the expression of genes for various immunoregulatory molecules in activated MSCs, but significantly inhibited the production of the vascular endothelial growth factor, hepatocyte growth factor or leukemia inhibitory factor. All of these observations are underlying the selective impact of morphine on stem cells, and offer an explanation for the mechanisms of the negative effects of opioid drugs on stem cells and regenerative processes after morphine administration or in opioid addicts.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic. .,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic.
| | - Kristina Cechova
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic
| | - Jan Kossl
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Pavla Bohacova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Michaela Hajkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| | - Petr Svoboda
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, 4, 142 20, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, 128 43, Prague 2, Czech Republic
| |
Collapse
|
7
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
8
|
Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells. Neurosci Lett 2017; 660:147-154. [DOI: 10.1016/j.neulet.2017.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
|
9
|
Jimenez-Gonzalez A, García-Concejo A, León-Lobera F, Rodriguez RE. Morphine delays neural stem cells differentiation by facilitating Nestin overexpression. Biochim Biophys Acta Gen Subj 2017; 1862:474-484. [PMID: 29111275 DOI: 10.1016/j.bbagen.2017.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Morphine is used as an analgesic although it causes important secondary effects. These effects are triggered by several mechanisms leading to the dysregulation of gene expression. Here we aimed to study these alterations on neural stem cells (NSC) during CNS development. METHODS AB strain and tg nestin:GFP zebrafish embryos, zebrafish primary neuron culture and mouse embryonic stem cells were used to assess the effect of morphine by qPCR, time lapse microscopy and western blot. ChIP-qPCR and bisulfite conversion assay were performed to determine the changes exerted by morphine in a Nestin candidate enhancer. RESULTS Morphine increases GFP in nestin:GFP embryos and overexpresses the NSC marker Nestin. Morphine also exerts a hyperacetylation effect on H3K27 and decreases DNA methylation within a region located 18 Kb upstream nestin transcription starting site. Here, a binding site for the transcription factor complex Sox2/Oct4/Nanog was predicted. These factors are also upregulated by morphine. Besides, morphine increases the histone acetyl transferase p300. The inhibition of p300 activity decreases Nestin. CONCLUSIONS Morphine facilitates Nestin increase by several mechanisms which include hyperacetylation of H3K27, decreased DNA methylation and the overexpression of the transcription factors sox2, oct4 and nanog. It has also been demonstrated that nestin levels depend on p300 activity. The facilitated Nestin expression delays the normal differentiation of neural stem cells. GENERAL SIGNIFICANCE The present work provides novel evidence of the effects induced by morphine in the normal differentiation of NSCs, altering Nestin through changes on p300, H3K27ac, DNA methylation and Oct4, Sox2, and Nanog.
Collapse
Affiliation(s)
- Ada Jimenez-Gonzalez
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Adrián García-Concejo
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Fernando León-Lobera
- Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Raquel E Rodriguez
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain; Institute of Neurosciences of Castilla y Leon (INCyL). University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|