1
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
2
|
Bilal B, Kirazlar M, Erdogan MA, Yigitturk G, Erbas O. Lacosamide exhibits neuroprotective effects in a rat model of Parkinson's disease. J Chem Neuroanat 2023; 132:102311. [PMID: 37442244 DOI: 10.1016/j.jchemneu.2023.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder that primarily affects the motor system. Although there are several treatments available to alleviate PD symptoms, there is currently no cure for the disease. Lacosamide, an anti-epileptic drug, has shown promising results in preclinical studies as a potential neuroprotective agent for PD. In this study, we aimed to investigate the neuroprotective effect of lacosamide in a murine model of PD. METHODS Twenty-one adult male rats were randomly divided into the following three groups (n = 7): 1 group received stereotaxical infusion of dimethyl sulfoxide (vehicle, group 1), and the others received stereotaxical infusion of rotenone (groups 2 and 3). The apomorphine-induced rotation test was applied to the rats after 10 days. Thereafter, group 2 was administered isotonic saline, whereas group 3 was administered lacosamide (20 mg/kg,i.p.) for 28 days. Apomorphine-induced rotation tests were performed to assess the effect of lacosamide on motor function. In addition, immunohistochemistry and biochemistry were used to assess the dopaminergic neuron loss in the substantia nigra and MDA, TNF-α and HVA levels, respectively. RESULTS In rats with Parkinson's disease induced by rotenone, levels of malondialdehyde and TNF-α significantly increased and HVA levels decreased, whereas in mice treated with lacosamide, levels of malondialdehyde and TNF-α significantly decreased and HVA levels increased. The apomorphine-induced rotation test scores of lacosamide-treated mice were lower compared with the untreated group. Furthermore, treatment with lacosamide significantly mitigated the degeneration of dopaminergic projections within the striatum originating from the substantia nigra and increased tyrosine hydroxylase (TH) immunofluorescence, indicative of preserved dopaminergic neuronal function. CONCLUSION In conclusion, our study provides evidence that lacosamide has a neuroprotective effect on the rat model of PD. Further studies are required to investigate the underlying mechanisms and evaluate the potential clinical use of lacosamide as a neuroprotective agent for PD.
Collapse
Affiliation(s)
- Burcin Bilal
- Izmir Katip Celebi University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Mehmet Kirazlar
- Izmir Katip Celebi University, Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | - Mumin Alper Erdogan
- Izmir Katip Celebi University, Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - Gurkan Yigitturk
- Mugla Sıtkı Kocman University, Faculty of Medicine, Department of Histology and Embryology, Mugla, Turkey
| | - Oytun Erbas
- Istanbul Demiroglu Bilim University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
3
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
4
|
Electrocorticographic and electrocardiographic evaluation of lacosamide in a penicillin-induced status epilepticus model. Epilepsy Res 2022; 180:106866. [DOI: 10.1016/j.eplepsyres.2022.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
|
5
|
Abd Allah HN, Abdul-Hamid M, Mahmoud AM, Abdel-Reheim ES. Melissa officinalis L. ameliorates oxidative stress and inflammation and upregulates Nrf2/HO-1 signaling in the hippocampus of pilocarpine-induced rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2214-2226. [PMID: 34363578 DOI: 10.1007/s11356-021-15825-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Epilepsy is characterized by recurrent epileptic seizures, and its effective management continues to be a therapeutic challenge. Oxidative stress and local inflammatory response accompany the status epilepticus (SE). This study evaluated the effect of Melissa officinalis extract (MOE) on oxidative stress, inflammation, and neurotransmitters in the hippocampus of pilocarpine (PILO)-administered rats, pointing to the involvement of Nrf2/HO-1 signaling. Rats received PILO via intraperitoneal administration and were treated with MOE for 2 weeks. MOE prevented neuronal loss; decreased lipid peroxidation, Cox-2, PGE2, and BDNF; and downregulated glial fibrillary acidic protein in the hippocampus of PILO-treated rats. In addition, MOE enhanced GSH and antioxidant enzymes, upregulated Nrf2 and HO-1 mRNA abundance, and increased the nuclear translocation of Nrf2 in the hippocampus of epileptic rats. Na+/K+-ATPase activity and GABA were increased, and glutamate and acetylcholine were decreased in the hippocampus of epileptic rats treated with MOE. In conclusion, MOE attenuated neuronal loss, oxidative stress, and inflammation; activated Nrf2/HO-1 signaling; and modulated neurotransmitters, GFAP, and Na+/K+-ATPase in the hippocampus of epileptic rats. These findings suggest that M. officinalis can mitigate epileptogenesis, pending further studies to explore the exact underlying mechanisms.
Collapse
Affiliation(s)
- Hagar N Abd Allah
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Biotechnology Department, Research Institute of Medicinal & Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt.
| | - Eman S Abdel-Reheim
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
The antiepileptic drug lacosamide and memory - A preclinial study. Epilepsy Behav 2021; 125:108401. [PMID: 34775245 DOI: 10.1016/j.yebeh.2021.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Lacosamide (LC) belongs to a new generation of antiepileptic drugs (AEDs) and demonstrates unique mechanism of action. The drug also shows neuroprotective activity on the hippocampus. In this study, the impact of LC on learning processes was assessed. METHODS Adult male Wistar rats (n = 40) were used. Lacosamide was administered p.o. as a single (25 mg/kg or 75 mg/kg) or repeated doses (75 mg/kg). The effect of the drug was assessed in the Morris water maze (spatial memory) and the passive avoidance (PA) (emotional memory). RESULTS Lacosamide administered at a single dose or repeatedly did not impair spatial memory in Morris water maze. Higher swimming speed was observed in rats after administration of acute doses of LC. In PA, the disturbance of emotional memory was observed only after the single high dose of LC. CONCLUSION Lacosamide does not impair memory and learning processes. The emotional memory impairment observed after the acute high dose appears to be temporary and did not occur after repeated administration.
Collapse
|
7
|
Ion-Channel Antiepileptic Drugs: An Analytical Perspective on the Therapeutic Drug Monitoring (TDM) of Ezogabine, Lacosamide, and Zonisamide. ANALYTICA 2021. [DOI: 10.3390/analytica2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The term seizures includes a wide array of different disorders with variable etiology, which currently represent one of the most important classes of neurological illnesses. As a consequence, many different antiepileptic drugs (AEDs) are currently available, exploiting different activity mechanisms and providing different levels of performance in terms of selectivity, safety, and efficacy. AEDs are currently among the psychoactive drugs most frequently involved in therapeutic drug monitoring (TDM) practices. Thus, the plasma levels of AEDs and their metabolites are monitored and correlated to administered doses, therapeutic efficacy, side effects, and toxic effects. As for any analytical endeavour, the quality of plasma concentration data is only as good as the analytical method allows. In this review, the main techniques and methods are described, suitable for the TDM of three AEDs belonging to the class of ion channel agents: ezogabine (or retigabine), lacosamide, and zonisamide. In addition to this analytical overview, data are provided, pertaining to two of the most important use cases for the TDM of antiepileptics: drug–drug interactions and neuroprotection activity studies. This review contains 146 references.
Collapse
|
8
|
Lazzarotto L, Pflüger P, Regner GG, Santos FM, Aguirre DG, Brito VB, Moura DJ, Dos Santos NM, Picada JN, Parmeggiani B, Frusciante MR, Leipnitz G, Pereira P. Lacosamide improves biochemical, genotoxic, and mitochondrial parameters after PTZ-kindling model in mice. Fundam Clin Pharmacol 2020; 35:351-363. [PMID: 32851690 DOI: 10.1111/fcp.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions. Hippocampi, blood, and bone marrow were collected for genotoxic and mutagenic evaluations. LCM 40 mg/kg increased latency and decreased percentage of seizures, only on the 3rd day of observation. The dose of 30 mg/kg only showed positive effects on the percentage of seizures on the 2nd day of observation. LCM decreased free radicals and SOD activity and the dose of 40 mg/kg were able to increase CAT activity. LCM 30 and 40 mg/kg improved the enzymatic mitochondrial activity of the complex I-III and LCM 30 mg/kg improved the activity of the complex II. In the comet assay, the damage induced by PTZ administration was reduced by LCM 20 and 30 mg/kg. The dose of 20 mg/kg increased COX-2 expression while the highest dose used, 40 mg/kg, was able to reduce this expression when compared to the group treated with LCM 20 mg/kg. Although LCM did not produce the antiepileptogenic effect in vivo, it showed the neuroprotective effect against oxidative stress, bioenergetic dysfunction, and DNA damage induced by the repeated PTZ administration.
Collapse
Affiliation(s)
- Letícia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Fernanda Marcélia Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Débora Gonçalves Aguirre
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Verônica Bidinotto Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | | | | | - Belisa Parmeggiani
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marina Rocha Frusciante
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
9
|
Neuroprotective Effects of Lacosamide and Memantine on Hyperoxic Brain Injury in Rats. Neurochem Res 2020; 45:1920-1929. [PMID: 32444924 DOI: 10.1007/s11064-020-03056-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
In neonates supraphysiological oxygen therapy has been demonstrated to cause neuronal death in hippocampus, prefrontal cortex, parietal cortex, and retrosplenial cortex. There is a need for the detection of novel neuroprotective drugs. Neuroprotective effects of lacosamide or memantine have been demonstrated in adult patients with ischemia, trauma and status epilepticus. The effects in immature brains may be different. This study aimed to evaluate neuroprotective effects of lacosamide and memantine treatment in a hyperoxia-induced brain injury model in immature rats. This study was performed in the Animal Experiments Laboratory of Dokuz Eylul University Faculty of Medicine. Neonatal Wistar strain rat pups were exposed to hyperoxia (80% oxygen + 20% nitrogen) for five days postnatally. They were divided into five groups; hyperoxia + lacosamide, hyperoxia + memantine, hyperoxia + lacosamide and memantine, hyperoxia + saline, control groups. After termination of the experiment, brain tissues were examined. Neuron counting in examined regions were found to be higher in hyperoxia + memantine and hyperoxia + lacosamide and memantine groups than hyperoxia + saline group. The presence of apoptotic cells evaluated with TUNEL and active Caspase-3 in hyperoxia + memantine and hyperoxia + lacosamide and memantine groups were found to be lower compared to hyperoxia + saline group. This study demonstrates that neuron death and apoptosis in newborn rat brains after hyperoxia is reduced upon memantine treatment. This is the first study to show the effects of memantine and lacosamide on hyperoxia-induced damage in neonatal rat brains.
Collapse
|
10
|
Savran M, Ozmen O, Erzurumlu Y, Savas HB, Asci S, Kaynak M. The Impact of Prophylactic Lacosamide on LPS-Induced Neuroinflammation in Aged Rats. Inflammation 2020; 42:1913-1924. [PMID: 31267274 DOI: 10.1007/s10753-019-01053-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sepsis-induced central nervous system damage is called sepsis-associated encephalopathy (SAE). In addition to neuroinflammation, oxidative stress and apoptosis act in the development of SAE. In the current study, we evaluated the protective effects of lacosamide (LCM) on neuroinflammation induced by lipopolysaccharide (LPS). Twenty-four Wistar albino rats were divided into 3 groups as controls, LPS group (5 mg/kg i.p.), and LPS plus LCM group (5 mg/kg i.p and 40 mg/kg i.p, respectively). In the rat brain, LPS-induced tissue damage was revealed histopathologically as hyperemia and microhemorrhages. LCM pretreatment ameliorated these histopathological changes. LPS decreased brain TAS levels and significantly increased MDA, CRP, HSP, IL-1β, and TNF-α expressions in the cortex, hippocampus, and cerebellum. Western analysis revealed increased brain tissue levels of TNF-α, NF-Kβ, and caspase-3 following LPS. Prophylactic LCM treatment reversed these parameters including oxidative stress, inflammation, and apoptosis in the cortex, hippocampus, and cerebellum.
Collapse
Affiliation(s)
- Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - O Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Y Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H B Savas
- Department of Medical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - S Asci
- Department of Neurology, Private Meddem Hospital, Isparta, Turkey
| | - M Kaynak
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
11
|
Park CW, Ahn JH, Lee TK, Park YE, Kim B, Lee JC, Kim DW, Shin MC, Park Y, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 2020; 124:109850. [PMID: 31981945 DOI: 10.1016/j.biopha.2020.109850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 01/27/2023] Open
Abstract
Oxcarbazepine (OXC), a voltage-gated sodium channel blocker, is an antiepileptic medication and used for the bipolar disorders treatment. Some voltage-gated sodium channel blockers have been demonstrated to display strong neuroprotective properties in models of cerebral ischemia. However, neuroprotective effects and mechanisms of OXC have not yet been reported. Here, we investigated the protective effect of OXC and its mechanisms in the cornu ammonis 1 subfield (CA1) of gerbils subjected to 5 min of transient global cerebral ischemia (tGCI). tGCI led to death of most pyramidal neurons in CA1 at 5 days after ischemia. OXC (100 and 200 mg/kg) was intraperitoneally administered once at 30 min after tGCI. Treatment with 200 mg/kg, not 100 mg/kg OXC, significantly protected CA1 pyramidal neurons from tGCI-induced injury. OXC treatment significantly decreased superoxide anion production, 4-hydroxy-2-nonenal and 8-hydroxyguanine levels in ischemic CA1 pyramidal neurons. In addition, the treatment restored levels of superoxide dismutases, catalase, and glutathione peroxidase. Furthermore, the treatment distinctly inhibited tGCI-induced microglia activation and significantly reduced levels of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). In particular, OXC treatment significantly enhanced expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 in ischemic CA1. The neuroprotective effects of OXC were abolished by brusatol (an inhibitor of Nrf2). Taken together, these results indicate that post-treatment of OXC can display neuroprotection against brain injuries following ischemic insults. This neuroprotection may be displayed by attenuation of oxidative stress and neuroinflammation, which can be mediated by activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea.
| |
Collapse
|
12
|
Demiroz S, Ur K, Bengu AS, Ulucan A, Atici Y, Erdogan S, Cirakli A, Erdem S. Neuroprotective Effects of Lacosamide in Experimental Peripheral Nerve Injury in Rats : A Prospective Randomized and Placebo-Controlled Trial. J Korean Neurosurg Soc 2019; 63:171-177. [PMID: 31805756 PMCID: PMC7054119 DOI: 10.3340/jkns.2019.0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To evaluate the neuroprotective effects of lacosamide after experimental peripheral nerve injury in rats. METHODS A total of 28 male wistar albino rats weighing 300-350 g were divided into four groups. In group I, the sciatic nerve exposed and the surgical wound was closed without injury; in group II, peripheral nerve injuries (PNI) was performed after dissection of the nerve; in group III, PNI was performed after dissection and lacosamide was administered, and in group IV, PNI was performed after dissection and physiological saline solution was administered. At 7 days after the injury all animals were sacrificed after walking track analysis. A 5 mL blood sample was drawn for biochemical analysis, and sciatic nerve tissues were removed for histopathological examination. RESULTS There is low tissue damage in lacosamide treated group and antioxidant anzymes and malondialdehyde levels were higher than non-treated and placebo treated group. However there was no improvement on clinical assessment. CONCLUSION The biochemical and histological analyses revealed that lacosamide has neuroprotective effect in PNI in rats. This neuroprotective capacity depends on its scavenger role for free oxygen radicals by increasing antioxidant enzyme activity.
Collapse
Affiliation(s)
- Serdar Demiroz
- Department of Orthopaedics and Traumatology, Medicalpark Hospital, Kocaeli, Turkey
| | - Koray Ur
- Department of Neurosurgery, Cigli Regional Education Hospital, İIzmir, Turkey
| | - Aydin Sukru Bengu
- Department of Medical Services and Techniques, Vocational School of Health Services, Bingol University, Bingöl, Turkey
| | - Aykut Ulucan
- Department of Medical Services and Techniques, Vocational School of Health Services, Bingol University, Bingöl, Turkey
| | - Yunus Atici
- Department of Orthopaedics and Traumatology, Medicalpark Gebze Hospital, Kocaeli, Turkey
| | - Sinan Erdogan
- Department of Orthopaedics and Traumatology, Baltalimanı Education and Research Hospital, Istanbul, Turkey
| | - Alper Cirakli
- Department of Orthopaedics and Traumatology, Ordu University, Ordu, Turkey
| | - Sevki Erdem
- Department of Orthopaedics and Traumatology, Medicana Hospital, İstanbul, Turkey
| |
Collapse
|
13
|
Nirwan N, Siraj F, Vohora D. Inverted-U response of lacosamide on pilocarpine-induced status epilepticus and oxidative stress in C57BL/6 mice is independent of hippocampal collapsin response mediator protein-2. Epilepsy Res 2018; 145:93-101. [PMID: 29935443 DOI: 10.1016/j.eplepsyres.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Currently, lacosamide (LCM) is not approved for use in status epilepticus (SE) but several shreds of evidence are available to support its use. The present study was, therefore, undertaken to evaluate the effect of LCM on pilocarpine (PILO) induced SE and neurodegeneration in C57BL/6 mice and to ascertain the involvement of CRMP-2 in mediating above effect. METHODS Pilocarpine-induced SE model was developed to explore the effect of LCM 20, 40 and 80 mg/kg in mice. We assessed the seizure severity, seizure latency, spontaneous alternation behavior (SAB) and motor coordination by behavioral observation. Histopathological evaluation and measurement of the levels of CRMP-2, reduced glutathione (GSH) and malondialdehyde (MDA) were carried out in mice hippocampus. RESULTS LCM exhibited a biphasic effect i.e., protection against SE at 20 mg/kg and 40 mg/kg dose whilst aggravated seizure-like behavior and mortality at 80 mg/kg. Further, it increased percentage alternation (i.e., restored spatial memory) in SAB and elevated motor impairment with increasing dose. Histologically, LCM 20 mg/kg and 40 mg/kg (but not 80 mg/kg) reduced neurodegeneration. LCM 20 mg/kg and 40 mg/kg reversed the elevated MDA and GSH levels while 80 mg/kg showed a tendency to increase oxidative stress. In contrast, LCM (at all doses) reversed the pilocarpine-induced elevation of collapsin response mediator protein-2 (CRMP-2). CONCLUSION LCM protected against pilocarpine-induced SE, associated neurodegeneration and improved pilocarpine-associated impairment of spatial memory. The study reveals that CRMP-2 may not be mediating the inverted-U-response of LCM at least in pilocarpine model. Therefore, the anti-oxidant effect of LCM (and not its ability to modulate CRMP-2) was anticipated as the mechanism underlying neuroprotection.
Collapse
Affiliation(s)
- Nikita Nirwan
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Fouzia Siraj
- National Institute of Pathology (ICMR), Safdarjang Hospital Campus, New Delhi 110029, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
14
|
Park CW, Lee TK, Cho JH, Kim IH, Lee JC, Shin BN, Ahn JH, Kim SK, Shin MC, Ohk TG, Cho JH, Won MH, Lee YJ, Seo JY, Park JH. Rufinamide pretreatment attenuates ischemia-reperfusion injury in the gerbil hippocampus. Neurol Res 2017; 39:941-952. [PMID: 28782435 DOI: 10.1080/01616412.2017.1362189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Rufinamide, a voltage-gated sodium channel (VGSC) blocker, is widely used for the clinical treatment of seizures associated with Lennox-Gastaut syndrome. Previous studies have demonstrated that VGSC blockers have neuroprotective properties against ischemic damage following experimental cerebral ischemia. However, protective effects of rufinamide against cerebral ischemic insults have not been addressed. Therefore, in the present study, we firstly examined neuroprotective effects of rufinamide using a gerbil model of transient global cerebral ischemia. METHODS Gerbils were established by the occlusion of common carotid arteries for 5 min. The gerbils were divided into vehicle-treated sham-operated group, vehicle-treated ischemia-operated group, 50 and 100 mg/kg rufinamide-treated sham-operated groups, and 50 and 100 mg/kg rufinamide-treated ischemia-operated groups. Rufinamide was administrated intraperitoneally once daily for 3 days before ischemic surgery. To examine neuroprotective effects of rufinamide, we carried out cresyl violet staining, neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, we examined gliosis using immunohistochemistry for glial fibrillary acidic protein (a marker for astrocytes) and ionized calcium-binding adapter molecule 1 (a marker for microglia). RESULTS We found that pre-treatment with 100 mg/kg of rufinamide effectively protected pyramidal neurons in the hippocampal cornus ammonis 1 (CA1) area after transient global cerebral ischemia. In addition, pre-treatment with 100 mg/kg of rufinamide significantly attenuated activations of astrocytes and microglia in the ischemic CA1 area. DISCUSSION These findings suggest that rufinamide can display neuroprotective effect against cerebral ischemic insults and that its neuroprotective effect may involve the attenuation of ischemia-induced glial activation.
Collapse
Affiliation(s)
- Chan Woo Park
- a Department of Emergency Medicine, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Tae-Kyeong Lee
- b Department of Neurobiology, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Jeong Hwi Cho
- b Department of Neurobiology, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - In Hye Kim
- b Department of Neurobiology, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Jae-Chul Lee
- b Department of Neurobiology, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Bich-Na Shin
- c Department of Physiology, College of Medicine , Hallym University , Chuncheon , South Korea
| | - Ji Hyeon Ahn
- d Department of Biomedical Science and Research Institute for Bioscience and Biotechnology , Hallym University , Chuncheon , South Korea
| | - Sung Koo Kim
- e Department of Pediatrics , Dongtan Sacred Heart Hospital, School of Medicine, Hallym University , Hwaseong , South Korea
| | - Myoung Cheol Shin
- a Department of Emergency Medicine, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Taek Geun Ohk
- a Department of Emergency Medicine, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Jun Hwi Cho
- a Department of Emergency Medicine, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Moo-Ho Won
- b Department of Neurobiology, School of Medicine , Kangwon National University , Chuncheon , South Korea
| | - Young Joo Lee
- f Department of Emergency Medicine , Seoul Hospital, College of Medicine, Sooncheonhyang University , Seoul , South Kore
| | - Jeong Yeol Seo
- g Department of Emergency Medicine , Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University , Chuncheon , South Korea
| | - Joon Ha Park
- d Department of Biomedical Science and Research Institute for Bioscience and Biotechnology , Hallym University , Chuncheon , South Korea
| |
Collapse
|
15
|
Chen BH, Park JH, Ahn JH, Cho JH, Kim IH, Lee JC, Won MH, Lee CH, Hwang IK, Kim JD, Kang IJ, Cho JH, Shin BN, Kim YH, Lee YL, Park SM. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regen Res 2017; 12:220-227. [PMID: 28400803 PMCID: PMC5361505 DOI: 10.4103/1673-5374.200805] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea
| |
Collapse
|