1
|
Wang J, Zeng X, Xue W, Jia Q, Jiang Q, Huo C, Jiao X, Zhang J, Wang Y, Tian L, Zhu Z. Transcriptomic profiling of lung fibroblasts in silicosis: Regulatory roles of Nrf2 agonists in a mouse model. Int Immunopharmacol 2024; 143:113273. [PMID: 39362014 DOI: 10.1016/j.intimp.2024.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Silicosis is an occupational disease caused by long-term inhalation of free silica, resulting in a significant global health burden. Its pathogenesis remains unclear, and there is no effective treatment. Proliferative and activated myofibroblasts play a key role in the development of silicosis. Traditional studies have focused on fibroblast proliferation and collagen secretion, neglecting their functional heterogeneity. With the advancement of omics research, more pathogenic fibroblast subgroups and their functions have been identified. In this study, we applied transcriptomics to analyze gene changes in primary lung fibroblasts during silicosis development using a mouse model. Our results indicate that DEGs are enriched in collagen secretion, ECM synthesis, leukocyte migration, and chemotaxis functions. Altered core genes are associated with immune cell recruitment and cell migration. Nrf2 agonists, known for anti-inflammatory and antioxidant properties, have shown potential therapeutic effects in fibrotic diseases. However, their effects on fibroblasts in silicosis are not fully understood. We used four common Nrf2 agonists to study gene expression changes in lung fibroblasts at the transcriptome level, combined with histopathological and biochemical methods, to investigate their effects on silicosis in mice. Results show that Nrf2 agonists can exert anti-silicosis fibrosis functions by downregulating genes like Fos and Egr1, involved in cell differentiation, proliferation, and inflammation. In conclusion, this study suggests that inflammation-related co-functions of fibroblasts may be a potential mechanism in silicosis pathogenesis. Targeting Nrf2 may be a promising strategy to alleviate oxidative stress and inflammation in silicosis.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zeng
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Xu X, Ding X, Wang Z, Ye S, Xu J, Liang Z, Luo R, Xu J, Li X, Ren Z. GBP2 inhibits pathological angiogenesis in the retina via the AKT/mTOR/VEGFA axis. Microvasc Res 2024; 154:104689. [PMID: 38636926 DOI: 10.1016/j.mvr.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pathological retinal angiogenesis is not only the hallmark of retinopathies, but also a major cause of blindness. Guanylate binding protein 2 (GBP2) has been reported to be associated with retinal diseases such as diabetic retinopathy and hypoxic retinopathy. However, GBP2-mediated pathological retinal angiogenesis remains largely unknown. The present study aimed to investigate the role of GBP2 in pathological retinal angiogenesis and its underlying molecular mechanism. In this study, we established oxygen-induced retinopathy (OIR) mice model for in vivo study and hypoxia-induced angiogenesis in ARPE-19 cells for in vitro study. We demonstrated that GBP2 expression was markedly downregulated in the retina of mice with OIR and ARPE-19 cells treated with hypoxia, which was associated with pathological retinal angiogenesis. The regulatory mechanism of GBP2 in ARPE-19 cells was studied by GBP2 silencing and overexpression. The regulatory mechanism of GBP2 in the retina was investigated by overexpressing GBP2 in the retina of OIR mice. Mechanistically, GBP2 downregulated the expression and secretion of vascular endothelial growth factor (VEGFA) in ARPE-19 cells and retina of OIR mice. Interestingly, overexpression of GBP2 significantly inhibited neovascularization in OIR mice, conditioned medium of GBP2 overexpressing ARPE-19 cells inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, we confirmed that GBP2 downregulated VEGFA expression and angiogenesis by inhibiting the AKT/mTOR signaling pathway. Taken together, we concluded that GBP2 inhibited pathological retinal angiogenesis via the AKT/mTOR/VEGFA axis, thereby suggesting that GBP2 may be a therapeutic target for pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xihui Ding
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zizhuo Wang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China; Anhui Public Health Clinical Center, Hefei, Anhui 230012, China
| | - Jianguang Xu
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zugang Liang
- Hefei Huaxia Mingren Eye Hospital, Hefei, Anhui 230032, China
| | - Renfei Luo
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyong Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China; College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Xu Y, Xin X, Tao T. Decoding the neurotoxic effects of propofol: insights into the RARα-Snhg1-Bdnf regulatory cascade. Am J Physiol Cell Physiol 2024; 326:C1735-C1752. [PMID: 38618701 PMCID: PMC11371332 DOI: 10.1152/ajpcell.00547.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 04/16/2024]
Abstract
The potential neurotoxic effects of propofol, an extensively utilized anesthetic, underline the urgency to comprehend its influence on neuronal health. Insights into the role of the retinoic acid receptor-α, small nucleolar RNA host gene 1, and brain-derived neurotrophic factor (RARα-Snhg1-Bdnf) network can offer significant advancements in minimizing these effects. The study targets the exploration of the RARα and Snhg1 regulatory network's influence on Bdnf expression in the realm of propofol-induced neurotoxicity. Harnessing the Gene Expression Omnibus (GEO) database and utilizing JASPAR and RNA-Protein Interaction Prediction (RPISeq) database for projections, the study embarks on an in-depth analysis employing both in vitro and in vivo models. The findings draw a clear link between propofol-induced neurotoxicity and the amplification of RAR signaling pathways, impacting hippocampal development and apoptosis and leading to increased RARα and Snhg1 and decreased Bdnf. Propofol is inferred to accentuate neurotoxicity by heightening RARα and Snhg1 interactions, culminating in Bdnf suppression.NEW & NOTEWORTHY This study aimed to decode propofol's neurotoxic effects on the regulatory cascade, provide insights into the RARα-Snhg1-Bdnf interaction, apply extensive validation techniques, provide a detailed analysis and exploration of propofol's neurotoxicity, and offer a comprehensive approach to understanding molecular interactions.
Collapse
Affiliation(s)
- Yuhai Xu
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Xin Xin
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| | - Tianzhu Tao
- Department of Anesthesiology, Air Force Medical Center, Beijing, People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Jin P, Guo Z, Tu Z, Yang H, Hu M, Li Q, Liu X, Li W, Hou S. Integrated Analysis of Chromatin and Transcriptomic Profiling Identifies PU.1 as a Core Regulatory Factor in Microglial Activation Induced by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2024; 61:2569-2589. [PMID: 37917300 PMCID: PMC11043206 DOI: 10.1007/s12035-023-03734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
In addition to causing white matter lesions, chronic cerebral hypoperfusion (CCH) can also cause damage to gray matter, but the underlying molecular mechanisms remain largely unknown. In order to obtain a better understanding of the relationship between gene expression and transcriptional regulation alterations, novel upstream regulators could be identified using integration analysis of the transcriptome and epigenetic approaches. Here, a bilateral common carotid artery stenosis (BCAS) model was established for inducing CCH in mice. The spatial cognitive function of mice was evaluated, and changes in cortical microglia morphology were observed. RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed on isolated mouse cortical brain tissue. Then, a systematic joint analysis of BCAS hypoperfusion-induced cortex-specific RNA-seq and ATAC-seq was conducted in order to assess the extent of the correlation between the two, and PU.1 was found to be greatly enriched through motif analysis and transcription factor annotation. Also, the core regulatory factor PU.1 induced by BCAS hypoperfusion was shown to be colocalized with microglia. Based on the above analysis, PU.1 plays a key regulatory role in microglial activation induced by CCH. And the transcriptome and epigenomic data presented in this study can help identify potential targets for future research exploring chronic hypoperfusion-induced brain injury.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weiwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
5
|
McGregor ER, Lasky DJ, Rippentrop OJ, Clark JP, Wright SLG, Jones MV, Anderson RM. Reversal of neuronal tau pathology, metabolic dysfunction, and electrophysiological defects via adiponectin pathway-dependent AMPK activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579204. [PMID: 38370802 PMCID: PMC10871331 DOI: 10.1101/2024.02.07.579204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.
Collapse
Affiliation(s)
- Eric R McGregor
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Danny J Lasky
- Department. of Neuroscience, Univ. of Wisconsin-Madison, Madison, WI
| | | | - Josef P Clark
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
| | | | - Mathew V Jones
- Department. of Neuroscience, Univ. of Wisconsin-Madison, Madison, WI
| | - Rozalyn M Anderson
- Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
- GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
6
|
Huang W, Zhang Y, Zheng B, Ling X, Wang G, Li L, Wang W, Pan M, Li X, Meng Y. GBP2 upregulated in LPS-stimulated macrophages-derived exosomes accelerates septic lung injury by activating epithelial cell NLRP3 signaling. Int Immunopharmacol 2023; 124:111017. [PMID: 37812968 DOI: 10.1016/j.intimp.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Macrophages infiltration is a crucial factor causing Sepsis-associated acute lung injury (ALI). Accumulating evidence suggests macrophages-alveolar epithelial cells communication is proven to be critical in ALI. However, little is known regarding how activated macrophages regulated sepsis-associated ALI. To explore the role of macrophages-alveolar epithelial cells communication in the ALI process, our data revealed that Lipopolysaccharides-induced macrophages-derived exosomes (L-Exo) induced sepsis-associated ALI and caused alveolar epithelial cells damage. Moreover, Guanylate-binding protein 2 (GBP2) was significantly upregulated in L-Exo, and NLRP3 inflammasomes was the direct target of GBP2. Further experimentation showed that GBP2 inhibition in vitro and in vivo reserves L-Exo effects, while GBP2 overexpression in vitro and in vivo promotes L-Exo effects. These results demonstrated that L-Exo contains excessive GBP2 and promotes inflammation through targeting NLRP3 inflammasomes, which induced alveolar epithelial cells dysfunction and pyroptosis. These findings demonstrate that L-Exo exerted a deleterious effect on ALI by regulating the GBP2/NLRP3 axis, which might provide new insight on ALI prevention and treatment.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bojun Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuguang Ling
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaoxia Pan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Ying Meng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Sato K, Ohno-Oishi M, Yoshida M, Sato T, Aizawa T, Sasaki Y, Maekawa S, Ishikawa M, Omodaka K, Kawano C, Ohue-Kitano R, Kimura I, Nakazawa T. The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury. Glia 2023; 71:2609-2622. [PMID: 37470163 DOI: 10.1002/glia.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Resident microglia are important to maintain homeostasis in the central nervous system, which includes the retina. The retinal microglia become activated in numerous pathological conditions, but the molecular signatures of these changes are poorly understood. Here, using an approach based on FACS and RNA-seq, we show that microglial gene expression patterns gradually change during RGC degeneration induced by optic nerve injury. Most importantly, we found that the microglial cells strongly expressed Tnf and Il1α, both of which are known to induce neurotoxic reactive astrocytes, and were characterized by Gpr84high -expressing cells in a particular subpopulation. Moreover, ripasudil, a Rho kinase inhibitor, significantly blunted Gpr84 expression and cytokine induction in vitro and in vivo. Finally, GPR84-deficient mice prevented RGC loss in optic nerve-injured retina. These results reveal that Rho kinase-mediated GPR84 alteration strongly contribute to microglial activation and promote neurotoxicity, suggesting that Rho-ROCK and GPR84 signaling may be potential therapeutic targets to prevent the neurotoxic microglial phenotype induced by optic nerve damage, such as occurs in traumatic optic neuropathy and glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Yoshida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taimu Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaharu Aizawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Sasaki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Zhang Z, Guo Z, Jin P, Yang H, Hu M, Zhang Y, Tu Z, Hou S. Transcriptome Profiling of Hippocampus After Cerebral Hypoperfusion in Mice. J Mol Neurosci 2023; 73:423-436. [PMID: 37266840 PMCID: PMC10432347 DOI: 10.1007/s12031-023-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is considered to be one of the major mechanism in the pathogenesis of vascular cognitive impairment (VCI). Increased inflammatory cells, particularly microglia, often parallel hypoperfusion-induced gray matter damage such as hippocampal lesions, but the exact mechanism remains largely unknown. To understand the pathological mechanisms, we analyzed hippocampus-specific transcriptome profiles after cerebral hypoperfusion. The mouse hypoperfusion model was induced by employing the 0.16/0.18 mm bilateral common carotid artery stenosis (BCAS) procedure. Cerebral blood flow (CBF) was assessed after 3-week hypoperfusion. Pathological changes were evaluated via hematoxylin staining and immunofluorescence staining. RNA-sequencing (RNA-seq) was performed using RNA samples of sham- or BCAS-operated mice, followed by quantitative real-time PCR (qRT-PCR) validation. We found that the 0.16/0.18 mm BCAS induced decreased CBF, hippocampal neuronal loss, and microglial activation. Furthermore, GSEA between sham and BCAS mice showed activation of interferon-beta signaling along with inflammatory immune responses. In addition, integrative analysis with published single-cell RNA-seq revealed that up-regulated differentially expressed genes (DEGs) were enriched in a distinct cell type of "microglia," and down-regulated DEGs were enriched in "CA1 pyramidal," not in "interneurons" or "S1 pyramidal." This database of transcriptomic profiles of BCAS-hypoperfusion will be useful for future studies to explore potential targets for vascular cognitive dysfunction.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Yuan Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
9
|
Ye S, Li S, Qin L, Zheng W, Liu B, Li X, Ren Z, Zhao H, Hu X, Ye N, Li G. GBP2 promotes clear cell renal cell carcinoma progression through immune infiltration and regulation of PD‑L1 expression via STAT1 signaling. Oncol Rep 2023; 49:49. [PMID: 36660930 PMCID: PMC9887463 DOI: 10.3892/or.2023.8486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Guanylate‑binding protein 2 (GBP2) has been widely studied in cancer, however, its potential role in clear cell renal cell carcinoma (ccRCC) is not fully elucidated. The present study aimed to explore the effect of GBP2 on tumor progression and its possible underlying molecular mechanisms in ccRCC. The Cancer Genome Atlas, Gene Expression Omnibus, Cancer Cell Line Encyclopedia databases, and several bioinformatics analysis tools, such as Gene Expression Profiling Interactive Analysis 2, Kaplan‑Meier plotter, UALCAN, LinkedOmics, Metascape, GeneMANIA and Tumor Immune Estimation Resource, were used to characterize the functional relationship between GBP2 and ccRCC. Focusing on the association between GBP2 and programmed death ligand 1 (PD‑L1) in vitro, the regulatory mechanism was investigated by knockdown and overexpression of GBP2 in Caki‑1 and 786‑O cells using reverse transcription‑quantitative PCR, western blotting and co‑immunoprecipitation techniques. The results indicated that GBP2 was commonly upregulated in ccRCC, correlating with worse prognosis. In addition, GBP2 expression levels were positively associated with different patterns of immune cell infiltration, suggesting that the GBP2 gene regulates PD‑L1 expression via the signal transducer and activator of transcription 1 (STAT1) pathway. The present study suggested that GBP2 regulates tumor immune infiltration and promotes tumor immune escape through PD‑L1 expression, revealing a potential immunotherapeutic target for ccRCC.
Collapse
Affiliation(s)
- Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Siyu Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Lei Qin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Wei Zheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Bin Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xiaohui Li
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaiming Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xudong Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Nan Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China,The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, Anhui 237005, P.R. China,The Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China,Correspondence to: Dr Guangyuan Li, Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Avenue, Hefei, Anhui 230012, P.R. China, E-mail:
| |
Collapse
|
10
|
Tang H, Shao C, Wang X, Cao Y, Li Z, Luo X, Yang X, Zhang Y. 6-Gingerol attenuates subarachnoid hemorrhage-induced early brain injury via GBP2/PI3K/AKT pathway in the rat model. Front Pharmacol 2022; 13:882121. [PMID: 36091803 PMCID: PMC9453877 DOI: 10.3389/fphar.2022.882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have elucidated the neuroprotective effect of 6-gingerol in central nervous system diseases. However, the potential role and mechanism of 6-gingerol on early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains poorly understood. Here, we report that 6-gingerol exerts a neuroprotective effect on SAH-induced EBI through the GBP2/PI3K/AKT pathway. A SAH rat model was established by injecting femoral artery blood into the cisterna magna. 6-gingerol or vehicle was injected intraperitoneally 1 hour post-SAH induction. We found that the neurological function score and brain edema of SAH rats were significantly improved after 6-gingerol treatment, as well as neuronal apoptosis was attenuated in SAH rats by Nissl staining assay and TUNEL assay. To further explore potential molecular mechanisms associated with 6-gingerol, RNA sequencing was implemented to investigate the differences in transcriptomes between SAH rats with and without 6-gingerol treatment; and found that the expression of guanylate-binding protein 2 (GBP2) evidently was suppressed with 6-gingerol treatment compared to vehicle group. In addition, dual immunofluorescence was also employed to investigate changes in neurons, astrocytes, and microglia after 6-gingerol treatment. The results showed that GBP2 was expressed in neurons but not astrocytes or microglia. Western blotting analysis results demonstrated that the PI3K/AKT pathway was activated in the SAH rats treated with 6-gingerol. Furthermore, recombinant GBP2 protein and LY294002 (PI3K inhibitor) treatment reversed the effects of 6-gingerol treatment in SAH rats. These results indicate that 6-gingerol suppressed the expression of GBP2 to activate the PI3K/AKT pathway, improve neurologic outcomes, reduce brain edema and neuronal apoptosis. In summary, our findings suggest that 6-gingerol could attenuate EBI post-SAH in rats, and 6-gingerol may serve as a novel candidate neuroprotective drug for SAH-induced EBI.
Collapse
Affiliation(s)
- Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Chuan Shao
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Yi Cao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
| | - Xiaoquan Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, SC, China
- Department of Neurosurgery, Chengdu Second People’s Hospital, Chengdu, SC, China
| | - Xiang Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
| | - Yuekang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, SC, China
- *Correspondence: Yuekang Zhang,
| |
Collapse
|
11
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
12
|
IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain. Mol Neurobiol 2022; 59:3337-3352. [DOI: 10.1007/s12035-022-02791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
|
13
|
Peng Y, Yu H, Jin Y, Qu F, Ren H, Tang Z, Zhang Y, Qu C, Zong B, Liu S. Construction and Validation of an Immune Infiltration-Related Gene Signature for the Prediction of Prognosis and Therapeutic Response in Breast Cancer. Front Immunol 2021; 12:666137. [PMID: 33986754 PMCID: PMC8110914 DOI: 10.3389/fimmu.2021.666137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer patients show significant heterogeneity in overall survival. Current assessment models are insufficient to accurately predict patient prognosis, and models for predicting treatment response are lacking. We evaluated the relationship between various immune cells and breast cancer and confirmed the association between immune infiltration and breast cancer progression. Different bioinformatics and statistical approaches were combined to construct a robust immune infiltration-related gene signature for predicting patient prognosis and responses to immunotherapy and chemotherapy. Our research found that a higher immune infiltration-related risk score (IRS) indicates that the patient has a worse prognosis and is not very sensitive to immunotherapy. In addition, a new nomogram was constructed based on the gene signature and clinicopathological features to improve the risk stratification and quantify the risk assessment of individual patients. Our study might contribute to the optimization of the risk stratification for survival and the personalized management of breast cancer.
Collapse
Affiliation(s)
- Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haochen Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanli Qu
- Department of Breast Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haoyu Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Qu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen B, Sun D, Qin X, Gao XH. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis. Invest New Drugs 2021; 39:928-948. [PMID: 33501609 DOI: 10.1007/s10637-021-01072-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Melanoma is a highly aggressive malignant skin tumor with a high rate of metastasis and mortality. In this study, a comprehensive bioinformatics analysis was used to clarify the hub genes and potential drugs. Download the GSE3189, GSE22301, and GSE35388 microarray datasets from the Gene Expression Omnibus (GEO), which contains a total of 33 normal samples and 67 melanoma samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) approach analyze DEGs based on the DAVID. Use STRING to construct protein-protein interaction network, and use MCODE and cytoHubba plug-ins in Cytoscape to perform module analysis and identified hub genes. Use Gene Expression Profile Interactive Analysis (GEPIA) to assess the prognosis of genes in tumors. Finally, use the Drug-Gene Interaction Database (DGIdb) to screen targeted drugs related to hub genes. A total of 140 overlapping DEGs were identified from the three microarray datasets, including 59 up-regulated DEGs and 81 down-regulated DEGs. GO enrichment analysis showed that these DEGs are mainly involved in the biological process such as positive regulation of gene expression, positive regulation of cell proliferation, positive regulation of MAP kinase activity, cell migration, and negative regulation of the apoptotic process. The cellular components are concentrated in the membrane, dendritic spine, the perinuclear region of cytoplasm, extracellular exosome, and membrane raft. Molecular functions include protein homodimerization activity, calmodulin-binding, transcription factor binding, protein binding, and cytoskeletal protein binding. KEGG pathway analysis shows that these DEGs are mainly related to protein digestion and absorption, PPAR signaling pathway, signaling pathways regulating stem cells' pluripotency, and Retinol metabolism. The 23 most closely related DEGs were identified from the PPI network and combined with the GEPIA prognostic analysis, CDH3, ESRP1, FGF2, GBP2, KCNN4, KIT, SEMA4D, and ZEB1 were selected as hub genes, which are considered to be associated with poor prognosis of melanoma closely related. Besides, ten related drugs that may have therapeutic effects on melanoma were also screened. These newly discovered genes and drugs provide new ideas for further research on melanoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Donghong Sun
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Xiuni Qin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
15
|
Ye F, Liang J, Li J, Li H, Sheng W. Development and Validation of a Five-Gene Signature to Predict Relapse-Free Survival in Multiple Sclerosis. Front Neurol 2020; 11:579683. [PMID: 33343487 PMCID: PMC7744728 DOI: 10.3389/fneur.2020.579683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system with a variable natural history of relapse and remission. Previous studies have found many differentially expressed genes (DEGs) in the peripheral blood of MS patients and healthy controls, but the value of these genes for predicting the risk of relapse remains elusive. Here we develop and validate an effective and noninvasive gene signature for predicting relapse-free survival (RFS) in MS patients. Methods: Gene expression matrices were downloaded from Gene Expression Omnibus and ArrayExpress. DEGs in MS patients and healthy controls were screened in an integrated analysis of seven data sets. Candidate genes from a combination of protein–protein interaction and weighted correlation network analysis were used to identify key genes related to RFS. An independent data set (GSE15245) was randomized into training and test groups. Univariate and least absolute shrinkage and selection operator–Cox regression analyses were used in the training group to develop a gene signature. A nomogram incorporating independent risk factors was developed via multivariate Cox regression analyses. Kaplan–Meier methods, receiver-operating characteristic (ROC) curves, and Harrell's concordance index (C-index) were used to estimate the performance of the gene signature and nomogram. The test group was used for external validation. Results: A five-gene signature comprising FTH1, GBP2, MYL6, NCOA4, and SRP9 was used to calculate risk scores to predict individual RFS. The risk score was an independent risk factor, and a nomogram incorporating clinical parameters was established. ROC curves and C-indices demonstrated great performance of these predictive tools in both the training and test groups. Conclusions: The five-gene signature may be a reliable tool for assisting physicians in predicting RFS in clinical practice. We anticipate that these findings could not only facilitate personalized treatment for MS patients but also provide insight into the complex molecular mechanism of this disease.
Collapse
Affiliation(s)
- Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Li
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Liu W, Zhao WJ, Wu YH. Study on the differentially expressed genes and signaling pathways in dermatomyositis using integrated bioinformatics method. Medicine (Baltimore) 2020; 99:e21863. [PMID: 32846838 PMCID: PMC7447406 DOI: 10.1097/md.0000000000021863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dermatomyositis is a common connective tissue disease. The occurrence and development of dermatomyositis is a result of multiple factors, but its exact pathogenesis has not been fully elucidated. Here, we used biological information method to explore and predict the major disease related genes of dermatomyositis and to find the underlying pathogenic molecular mechanism.The gene expression data of GDS1956, GDS2153, GDS2855, and GDS3417 including 94 specimens, 66 cases of dermatomyositis specimens and 28 cases of normal specimens, were obtained from the Gene Expression Omnibus database. The 4 microarray gene data groups were combined to get differentially expressed genes (DEGs). The gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of DEGs were operated by the database for annotation, visualization and integrated discovery and KEGG orthology based annotation system databases, separately. The protein-protein interaction networks of the DEGs were built from the STRING website. A total of 4097 DEGs were extracted from the 4 Gene Expression Omnibus datasets, of which 2213 genes were upregulated, and 1884 genes were downregulated. Gene ontology analysis indicated that the biological functions of DEGs focused primarily on response to virus, type I interferon signaling pathway and negative regulation of viral genome replication. The main cellular components include extracellular space, cytoplasm, and blood microparticle. The molecular functions include protein binding, double-stranded RNA binding and MHC class I protein binding. KEGG pathway analysis showed that these DEGs were mainly involved in the toll-like receptor signaling pathway, cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway, complement and coagulation cascades, arginine and proline metabolism, phagosome signaling pathway. The following 13 closely related genes, XAF1, NT5E, UGCG, GBP2, TLR3, DDX58, STAT1, GBP1, PLSCR1, OAS3, SP100, IGK, and RSAD2, were key nodes from the protein-protein interaction network.This research suggests that exploring for DEGs and pathways in dermatomyositis using integrated bioinformatics methods could help us realize the molecular mechanism underlying the development of dermatomyositis, be of actual implication for the early detection and prophylaxis of dermatomyositis and afford reliable goals for the curing of dermatomyositis.
Collapse
Affiliation(s)
- Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Wen-Jia Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
| | - Yuan-Hao Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
17
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Integrated Bioinformatics Analysis for the Identification of Key Molecules and Pathways in the Hippocampus of Rats After Traumatic Brain Injury. Neurochem Res 2020; 45:928-939. [PMID: 31997105 DOI: 10.1007/s11064-020-02973-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
High-throughput and bioinformatics technology have been broadly applied to demonstrate the key molecules involved in traumatic brain injury (TBI), while no study has integrated the available TBI-related datasets for analysis. In this study, four available expression datasets of fluid percussion injury (FPI) and sham samples from the hippocampus of rats were analysed. A total of 248 differentially expressed genes (DEGs) and 10 differentially expressed microRNAs (DEMIs) were identified. Then, functional annotation was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most of the DEGs were enriched for the term inflammatory immune response. The MCODE plug-in in the Cytoscape software was applied to build a protein-protein interaction (PPI) network, and 18 hub genes were demonstrated to be enriched in the cell cycle pathway. Besides, time sequence (3 h, 6 h, 12 h, 24 h, and 48 h) profile analysis was performed using short time-series expression miner (STEM). The significantly expressed genes were assigned into 24 pattern clusters with four significant uptrend clusters. Four DEGs, Fcgr2a, Bcl2a1, Cxcl16, and Gbp2, were found to be differentially expressed at all time-points. Fifty-three DEGs and eight DEMIs were identified to form a miRNA-mRNA negative regulatory network using miRWalk3.0 and Cytoscape. Moreover, the mRNA levels of eight hub genes were validated by qRT-PCR. These DEGs, DEMIs, and time-dependent expression patterns facilitate our knowledge of the molecular mechanisms underlying the process of TBI in the hippocampus of rats and have the potential to improve the diagnosis and treatment of TBI.
Collapse
|
19
|
Schori C, Trachsel C, Grossmann J, Barben M, Klee K, Storti F, Samardzija M, Grimm C. A chronic hypoxic response in photoreceptors alters the vitreous proteome in mice. Exp Eye Res 2019; 185:107690. [PMID: 31181196 DOI: 10.1016/j.exer.2019.107690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023]
Abstract
Reduced oxygenation of the outer retina in the aging eye may activate a chronic hypoxic response in RPE and photoreceptor cells and is considered as a risk factor for the development of age-related macular degeneration (AMD). In mice, a chronically active hypoxic response in the retinal pigment epithelium (RPE) or photoreceptors leads to age-dependent retinal degeneration. To identify proteins that may serve as accessible markers for a chronic hypoxic insult to photoreceptors, we used proteomics to determine the protein composition of the vitreous humor in genetically engineered mice that lack the von Hippel-Lindau tumor suppressor (Vhl) specifically in rods (rodΔVhl) or cones (all-coneΔVhl). Absence of VHL leads to constitutively active hypoxia-inducible transcription factors (HIFs) and thus to a molecular response to hypoxia even in normal room air. To discriminate between the consequences of a local response in photoreceptors and systemic hypoxic effects, we also evaluated the vitreous proteome of wild type mice after exposure to acute hypoxia. 1'043 of the identified proteins were common to all three hypoxia models. 257, 258 and 356 proteins were significantly regulated after systemic hypoxia, in rodΔVhl and in all-coneΔVhl mice, respectively, at least at one of the analyzed time points. Only few of the regulated proteins were shared by the models indicating that the vitreous proteome is differentially affected by systemic hypoxia and the rod or cone-specific hypoxic response. Similarly, the distinct protein compositions in the individual genetic models at early and late time points suggest regulated, cell-specific and time-dependent processes. Among the proteins commonly regulated in the genetic models, guanylate binding protein 2 (GBP2) showed elevated levels in the vitreous that were accompanied by increased mRNA expression in the retina of both rodΔVhl and all-coneΔVhl mice. We hypothesize that some of the differentially regulated proteins at early time points may potentially be used as markers for the detection of a chronic hypoxic response of photoreceptors.
Collapse
Affiliation(s)
- Christian Schori
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Maya Barben
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Katrin Klee
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Federica Storti
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Dept. Ophthalmology, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|