1
|
Chen KQ, Wang SZ, Lei HB, Liu X. Necrostatin-1: a promising compound for neurological disorders. Front Cell Neurosci 2024; 18:1408364. [PMID: 38994325 PMCID: PMC11236683 DOI: 10.3389/fncel.2024.1408364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Necrostatin-1, a small molecular alkaloid, was identified as an inhibitor of necroptosis in 2005. Investigating the fundamental mechanism of Necrostatin-1 and its role in various diseases is of great significance for scientific and clinical research. Accumulating evidence suggests that Necrostatin-1 plays a crucial role in numerous neurological disorders. This review aims to provide a comprehensive overview of the potential functions of Necrostatin-1 in various neurological disorders, offering valuable insights for future research.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, University of South China, Hengyang, China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
2
|
Xiang Q, Yi X, Zhu XH, Wei X, Jiang DS. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab 2024; 35:219-234. [PMID: 37981501 DOI: 10.1016/j.tem.2023.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Chen H, Feng Z, Min L, Tan M, Zhang D, Gong Q, Liu H, Hou J. Vagus Nerve Stimulation Prevents Endothelial Necroptosis to Alleviate Blood-Spinal Cord Barrier Disruption After Spinal Cord Injury. Mol Neurobiol 2023; 60:6466-6475. [PMID: 37460917 DOI: 10.1007/s12035-023-03477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 09/28/2023]
Abstract
Vagus nerve stimulation (VNS) is a promising neuromodulation technique, which has been demonstrated to promote functional recovery after spinal cord injury (SCI) in our previous study. But the underlying mechanism remains to be explored. Using a compressed SCI model, our present study first demonstrated that activated microglia produce abundant tumor necrosis factor-α (TNF-α) to induce endothelial necroptosis via receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed lineage kinase domain-like protein (MLKL) pathway, thus destroying the blood-spinal cord barrier (BSCB) after SCI. While both TNF-α specifical antibody (infliximab) and necroptosis inhibitor (necrostatin-1) alleviate BSCB disruption. Then our study found that VNS significantly inhibits microglia-derived TNF-α production and reduces expression of p-RIP3 and p-MLKL in endothelial cells. As expected, further results indicated that VNS mitigates the BSCB disruption, thus reducing inflammatory cells infiltration and neural damage. Finally, both electrophysiological evaluation and locomotor test demonstrated that VNS promotes motor function recovery after SCI. In conclusion, our data demonstrated VNS restricts microglia-derived TNF-α to prevent RIP1/RIP3/MLKL mediated endothelial necroptosis, thus alleviating the decisive pathophysiological BSCB disruption to reduce neuroinflammation and neural damage, which ultimately promotes motor function recovery after SCI. Therefore, these results further elaborate that VNS might be a promising therapeutic strategy for SCI. Vagus nerve stimulation prevents microglia-derived TNF-α induced endothelial necroptosis to alleviate blood-spinal cord barrier disruption after spinal cord injury.
Collapse
Affiliation(s)
- Hui Chen
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Rehabilitation, Wusheng Hospital of Traditional Chinese Medicine, Sichuan, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lingxia Min
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingliang Tan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongyun Zhang
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiuwen Gong
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
5
|
Yu C, Wang X, Qin J. Effect of necrostatin-1 on sciatic nerve crush injury in rat models. J Orthop Surg Res 2023; 18:74. [PMID: 36717933 PMCID: PMC9885697 DOI: 10.1186/s13018-023-03565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Necrostatin-1 (Nec-1) is an inhibitor of the receptor interacting protein (RIP)1 kinase, which acts as an inhibitor of necroptosis, a special form of necrosis. In the present study, the effect of Nec-1 on peripheral nerve injury (PNI) was investigated. METHODS The PNI model was established by inducing sciatic nerve injury. Hematoxylin-eosin and immunofluorescence staining techniques were used to assess the extent of injury to nerve fibers and necrosis of Schwann cells (SCs). Western blotting was performed to detect the expression of necroptosis-related factors (RIP1 and RIP3). The concentrations of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and the oxidative stress-related enzyme malondialdehyde (MDA) were determined to indicate the degree of inflammation and oxidative stress. RESULTS Nec-1 could decrease the degree of peripheral nerve lesions after PNI and protect SCs and axons by inhibiting necroptosis. Furthermore, Nec-1 could reduce necroptosis by inhibiting RIP1 and effectively reduce inflammation and reactive oxygen species production at the early stage of PNI. CONCLUSIONS Alleviation of necroptosis by Nec-1 may provide new insights into therapies for the early stages of peripheral nerve repair after PNI.
Collapse
Affiliation(s)
- Chen Yu
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 210000 Jiangsu China
| | - Xiaoxu Wang
- grid.412017.10000 0001 0266 8918Department of Orthopaedics, The Second Hospital, University of South China, Hengyang, 421000 Hunan China
| | - Jian Qin
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 210000 Jiangsu China
| |
Collapse
|
6
|
FU JIAWEI, WU CHUNSHUAI, XU GUANHUA, ZHANG JINLONG, LI YIQIU, JI CHUNYAN, CUI ZHIMING. Role of necroptosis in spinal cord injury and its therapeutic implications. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells 2022; 11:cells11213339. [PMID: 36359735 PMCID: PMC9658791 DOI: 10.3390/cells11213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023] Open
Abstract
Proteostasis (protein homeostasis) is critical for cellular as well as organismal survival. It is strictly regulated by multiple conserved pathways including the ubiquitin-proteasome system, autophagy, the heat shock response, the integrated stress response, and the unfolded protein response. These overlapping proteostasis maintenance modules respond to various forms of cellular stress as well as organismal injury. While proteostasis restoration and ultimately organism survival is the main evolutionary driver of such a regulation, unresolved disruption of proteostasis may engage pro-apoptotic mediators of those pathways to eliminate defective cells. In this review, we discuss proteostasis contributions to the pathogenesis of traumatic spinal cord injury (SCI). Most published reports focused on the role of proteostasis networks in acute/sub-acute tissue damage post-SCI. Those reports reveal a complex picture with cell type- and/or proteostasis mediator-specific effects on loss of neurons and/or glia that often translate into the corresponding modulation of functional recovery. Effects of proteostasis networks on such phenomena as neuro-repair, post-injury plasticity, as well as systemic manifestations of SCI including dysregulation of the immune system, metabolism or cardiovascular function are currently understudied. However, as potential interventions that target the proteostasis networks are expected to impact many cell types across multiple organ systems that are compromised after SCI, such therapies could produce beneficial effects across the wide spectrum of highly variable human SCI.
Collapse
|
8
|
Liang ZY, Xu XJ, Rao J, Yang ZL, Wang CH, Chen CM. Mesenchymal Stem Cell-Derived Exosomal MiRNAs Promote M2 Macrophages Polarization: Therapeutic Opportunities for Spinal Cord Injury. Front Mol Neurosci 2022; 15:926928. [PMID: 35903172 PMCID: PMC9319398 DOI: 10.3389/fnmol.2022.926928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is an enormous public health concern affecting approximately 250,000–500,000 people worldwide each year. It is mostly irreversible considering the limitations of currently available treatments, and its prevention and management have been the prime focus of many studies. Mesenchymal stem cell (MSC) transplantation is one of the most promising treatments for SCI. The role of MSCs in SCI has been studied extensively, and MSCs have been shown to have many limitations. Moreover, the therapeutic effects of MSCs are more likely related to paracrine effects. In SCIs, macrophages from peripheral sources differentiate into M1 macrophages, promoting inflammation and aggravating neuronal damage; however, studies have shown that MSC-derived exosomes can induce the polarization of macrophages from the M1 to the M2 phenotype, thereby promoting nerve function recovery in patients with SCI. In this review, we discussed the research progress of MSC-derived exosomal miRNAs in promoting M2 macrophage differentiation in the SCI, and introduced some exosomal miRNAs that can regulate the differentiation of M2 macrophages in non-SCI; it is hoped that the regulatory role of these exosome-derived miRNAs can be confirmed in SCI.
Collapse
Affiliation(s)
- Ze-Yan Liang
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| | | | | | | | - Chun-Hua Wang
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| | - Chun-Mei Chen
- *Correspondence: Ze-Yan Liang Chun-Hua Wang Chun-Mei Chen
| |
Collapse
|
9
|
Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K. Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 2021; 40:125-134. [PMID: 36100321 PMCID: PMC9481937 DOI: 10.1016/j.jare.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/04/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
10
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
11
|
Chang L, Liu X, Chen J, Liu H, Wang G, Wang G, Liao X, Shen X. Attenuation of Activated eIF2α Signaling by ISRIB Treatment After Spinal Cord Injury Improves Locomotor Function. J Mol Neurosci 2021; 72:585-597. [PMID: 34647267 PMCID: PMC8921087 DOI: 10.1007/s12031-021-01920-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
Following spinal cord injury (SCI), multiple signaling cascades are activated instantaneously in the injured segments of the spinal cord to create a complex and pathogenic microenvironment, making it difficult to treat SCI. Nevertheless, the significance of the integrated stress response (ISR) to the series of physiological and pathological changes that occur after SCI remains unclear. Through western blotting (WB), we determined that the autophosphorylation of stress receptors (GCN2, PERK, PKR, and HRI) was enhanced after SCI, leading to increased phosphorylation of eIF2α at Ser51. Strikingly, we found that eIF2α was highly phosphorylated at 1 day post injury (dpi) and that this hypophosphorylation was maintained thereafter in the spinal cord, especially in neurons, which suggests that intervening with eIF2α phosphorylation may be a treatment strategy for SCI. Therefore, we employed the small molecule ISRIB, which inhibits eIF2α phosphorylation when the ISR is activated at moderate or low levels but not when the ISR is highly activated. Daily intraperitoneal injection of ISRIB significantly inhibited ISR signaling after SCI, reduced the cytosolic localization of RNA-binding proteins, and decreased neuronal apoptosis. Histological and functional experiments further demonstrated that treatment with ISRIB after SCI effectively curbed morphological deterioration and promoted the recovery of locomotor function. In summary, the ISR plays an important role in SCI, and ISRIB is a promising drug for the treatment of SCI.
Collapse
Affiliation(s)
- Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Jing Chen
- Department of Endocrinology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hongzhe Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guoping Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Guohua Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China
| | - Xiaoyun Liao
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), No.61, West Jiefang Road, Changsha, 410005, China.
| |
Collapse
|
12
|
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2020; 163:105297. [PMID: 33181319 PMCID: PMC7962892 DOI: 10.1016/j.phrs.2020.105297] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed cell death discovered and investigated in recent years. There are already many studies demonstrating the essential role of necroptosis in various diseases, including inflammatory diseases, cardiovascular diseases and neurological diseases. However, the potential of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis signaling pathway and thus ameliorate necroptotic cell death in disease development. Recent research findings indicate that Nec-1 could be applied in several types of diseases to alleviate disease development or improve prognosis. Moreover, we predict that Nec-1 has the potential to protect against the complications of coronavirus disease 2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and the underlying molecular mechanism, providing research evidence for its future application.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
AGEs-RAGE axis causes endothelial-to-mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling. Exp Gerontol 2020; 141:111088. [DOI: 10.1016/j.exger.2020.111088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
14
|
Salvadores N, Court FA. The necroptosis pathway and its role in age-related neurodegenerative diseases: will it open up new therapeutic avenues in the next decade? Expert Opin Ther Targets 2020; 24:679-693. [PMID: 32310729 DOI: 10.1080/14728222.2020.1758668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Necroptosis is a programmed form of necrotic cell death. Growing evidence demonstrates that necroptosis contributes to cell demise in different pathological conditions including age-dependent neurodegenerative diseases (NDs). These findings open new avenues for understanding the mechanisms of neuronal loss in NDs, which might eventually translate into novel therapeutic interventions. AREAS COVERED We reviewed key aspects of necroptosis, in health and disease, focusing on evidence demonstrating its involvement in the pathogenesis of age-related NDs. We then highlight the activation of this pathway in the mechanism of axonal degeneration. We searched on PubMed the literature regarding necroptosis published between 2008 and 2020 and reviewed all publications were necroptosis was studied in the context of age-related NDs. EXPERT OPINION Axonal loss and neuronal death are the ultimate consequences of NDs that translate into disease phenotypes. Targeting degenerative mechanisms of the neuron appears as a strategy that might cover a wide range of diseases. Thus, the participation of necroptosis as a common mediator of neuronal demise emerges as a promising target for therapeutic intervention. Considering evidence demonstrating that necroptosis mediates axonal degeneration, we propose and discuss the potential of targeting necroptosis-mediated axonal destruction as a strategy to tackle NDs before neuronal loss occurs.
Collapse
Affiliation(s)
- Natalia Salvadores
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor , Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism , Santiago, Chile
| | - Felipe A Court
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor , Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism , Santiago, Chile
| |
Collapse
|
15
|
Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Res Ther 2020; 22:75. [PMID: 32272965 PMCID: PMC7146970 DOI: 10.1186/s13075-020-2146-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) often leads to neurological damage and mortality. In this regard, understanding the pathology of SCIRI and preventing its development are of great clinic value. Methods Herein, we analyzed the role of bone marrow mesenchymal stem cell (BMMSC)-derived exosomal microRNA (miR)-124-3p in SCIRI. A SCIRI rat model was established, and the expression of Ern1 and M2 macrophage polarization markers (Arg1, Ym1, and Fizz) was determined using immunohistochemistry, immunofluorescence assay, RT-qPCR, and western blot analysis. Targeting relationship between miR-124-3p and Ern1 was predicted using bioinformatic analysis and verified by dual-luciferase reporter assay. Macrophages were co-cultured with miR-124-3p-containing BMMSC-derived exosomes. M2 macrophages were identified using flow cytometry, and the expression of Arg1, Ym1, and Fizz was determined. In addition, SCIRI rats were injected with miR-124-3p-containing exosomes, spinal cord cell apoptosis was observed using TUNEL assay, and the pathological condition was evaluated with H&E staining. Results In SCIRI, Ern1 was highly expressed and M2 polarization markers were poorly expressed. Silencing Ern1 led to elevated expression of M2 polarization markers. MiR-124-3p targeted and negatively regulated Ern1. Exosomal miR-124-3p enhanced M2 polarization. Highly expressed exosomal miR-124-3p impeded cell apoptosis and attenuated SCIRI-induced tissue impairment and nerve injury. miR-124-3p from BMMSC-derived exosomes ameliorated SCIRI and its associated nerve injury through inhibiting Ern1 and promoting M2 polarization. Conclusion In summary, exosomal miR-124-3p derived from BMMSCs attenuated nerve injury induced by SCIRI by regulating Ern1 and M2 macrophage polarization.
Collapse
Affiliation(s)
- Ran Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| | - Qing Ruan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
16
|
Luo X, Lin B, Gao Y, Lei X, Wang X, Li Y, Li T. Genipin attenuates mitochondrial-dependent apoptosis, endoplasmic reticulum stress, and inflammation via the PI3K/AKT pathway in acute lung injury. Int Immunopharmacol 2019; 76:105842. [PMID: 31466050 DOI: 10.1016/j.intimp.2019.105842] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
The protective effects of genipin against lipopolysaccharide (LPS)-induced acute lung injury (ALI) have been reported; however, the mechanism is unclear. Genipin performs its pharmacological effects via activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In the present study, we aimed to determine whether the PI3K/AKT pathway is involved in the protective effects of genipin against mitochondrial-dependent apoptosis, endoplasmic reticulum stress (ERS), and inflammation in ALI. We constructed in vivo and in vitro models of LPS-induced ALI. PI3K/AKT signaling was inhibited using LY294002. Pretreatment with genipin increased AKT phosphorylation, indicating that PI3K/AKT signaling was upregulated. Genipin pretreatment prevented LPS-induced histopathological deterioration, increased pulmonary edema, and decreased oxygenation index, all of which were inhibited using LY294002. In addition, genipin pretreatment attenuated LPS-mediated mitochondrial apoptosis, as indicated by improved mitochondrial dysfunction, downregulation of BAX (BCL2 associated X, apoptosis regulator), upregulation of BCL2 (BCL2 apoptosis regulator), inhibited the release of cytochrome c, activation of caspase-3, and cell apoptosis. Genipin pretreatment inhibited the LPS-induced upregulation of AF4/FMR2 family member 4 (CHOP), glucose-regulated protein, 78 kDa (GRP78), and X-box binding protein 1 (XBP1) levels, indicating ERS suppression. Moreover, genipin pretreatment alleviated LPS-induced inflammation, indicating by blockade of nuclear factor kappa b (NF-κB) signaling activation and reduced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 levels in the lung and bronchoalveolar lavage fluid. LY294002 could inhibit these genipin-induced protective effects against apoptosis, ERS, and inflammation. Thus, genipin significantly activates PI3K/AKT signaling to ameliorate mitochondria-dependent apoptosis, ERS, and inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Xu Luo
- Department of Critical Care Medicine, The People's Hospital of Longhua, Shenzhen 518109, China
| | - Bo Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University/The First School of Clinical Medicine, Fujian Medical University, Fuzhou 350005, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University/The First School of Clinical Medicine, Fujian Medical University, Fuzhou 350005, China
| | - Xianghui Lei
- Department of Pathology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Yunfeng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China.
| |
Collapse
|
17
|
Wang Y, Jiao J, Zhang S, Zheng C, Wu M. RIP3 inhibition protects locomotion function through ameliorating mitochondrial antioxidative capacity after spinal cord injury. Biomed Pharmacother 2019; 116:109019. [DOI: 10.1016/j.biopha.2019.109019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
|
18
|
Liang YX, Wang NN, Zhang ZY, Juan ZD, Zhang C. Necrostatin-1 Ameliorates Peripheral Nerve Injury-Induced Neuropathic Pain by Inhibiting the RIP1/RIP3 Pathway. Front Cell Neurosci 2019; 13:211. [PMID: 31156396 PMCID: PMC6529821 DOI: 10.3389/fncel.2019.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Necrostatin-1 is an inhibitor of necroptosis, a form of programmed cell death that has been reported to be involved in various neurological diseases. Presently, the role of necroptosis in neuropathic pain induced by peripheral nerve injury is still unclear. This study was focused on investigating the potential effects of necroptosis in the development and progression of neuropathic pain in a rat model and the possible neuroprotective effects of necrostatin-1 in neuropathic pain. The results indicated that the necroptosis-related proteins RIP1 and RIP3 significantly increased postoperation in the spinal cord in a neuropathic pain model and peaked 7 days postoperation, which was consistent with the time-dependent changes of hyperalgesia. Additionally, we found that peripheral nerve injury-related behavioral and biochemical changes were significantly reduced by necrostatin-1. In particular, hyperalgesia was attenuated, and the levels of RIP1 and RIP3 were decreased. Furthermore, the ultrastructure of necrotic cell death and neuroinflammation were alleviated by necrostatin-1. Collectively, these results suggest that necroptosis is an important mechanism of cell death in neuropathic pain induced by peripheral nerve injury and that necrostatin-1 may be a promising neuroprotective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Ying-Xia Liang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China.,Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nan-Nan Wang
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhi-Yu Zhang
- Department of Microsurgery, Shouguang People's Hospital, Weifang, China
| | - Zhao-Dong Juan
- Medicine and Health Key Laboratory of Clinical Anesthesia, Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
19
|
Schiavone S, Trabace L. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders. Molecules 2018; 23:molecules23020411. [PMID: 29438357 PMCID: PMC6017408 DOI: 10.3390/molecules23020411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|