1
|
Salarvandian S, Digaleh H, Khodagholi F, Javadpour P, Asadi S, Zaman AAO, Dargahi L. Harmonic activity of glutamate dehydrogenase and neuroplasticity: The impact on aging, cognitive dysfunction, and neurodegeneration. Behav Brain Res 2025; 480:115399. [PMID: 39675635 DOI: 10.1016/j.bbr.2024.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
In recent years, glutamate has attracted significant attention for its roles in various brain processes. However, one of its key regulators, glutamate dehydrogenase (GDH), remains understudied despite its pivotal role in several biochemical pathways. Dysfunction or dysregulation of GDH has been implicated in aging and various neurological disorders, such as Alzheimer's disease and Parkinson's disease. In this review, the impact of GDH on aging, cognitive impairment, and neurodegenerative conditions, as exemplars of the phenomena that may affected by neuroplasticity, has been reviewed. Despite extensive research on synaptic plasticity, the precise influence of GDH on brain structure and function remains undiscovered. This review of existing literature on GDH and neuroplasticity reveals diverse and occasionally conflicting effects. Future research endeavors should aim to describe the precise mechanisms by which GDH influences neuroplasticity (eg. synaptic plasticity and neurogenesis), particularly in the context of human aging and disease progression. Studies on GDH activity have been limited by factors such as insufficient sample sizes and varying experimental conditions. Researchers should focus on investigating the molecular mechanisms by which GDH modulates neuroplasticity, utilizing various animal strains and species, ages, sexes, GDH isoforms, brain regions, and cell types. Understanding GDH's role in neuroplasticity may offer innovative therapeutic strategies for neurodegenerative and psychiatric diseases, potentially slowing the aging process and promoting brain regeneration.
Collapse
Affiliation(s)
- Shakiba Salarvandian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Orang Zaman
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Plaitakis A, Sidiropoulou K, Kotzamani D, Litso I, Zaganas I, Spanaki C. Evolution of Glutamate Metabolism via GLUD2 Enhances Lactate-Dependent Synaptic Plasticity and Complex Cognition. Int J Mol Sci 2024; 25:5297. [PMID: 38791334 PMCID: PMC11120665 DOI: 10.3390/ijms25105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Human evolution is characterized by rapid brain enlargement and the emergence of unique cognitive abilities. Besides its distinctive cytoarchitectural organization and extensive inter-neuronal connectivity, the human brain is also defined by high rates of synaptic, mainly glutamatergic, transmission, and energy utilization. While these adaptations' origins remain elusive, evolutionary changes occurred in synaptic glutamate metabolism in the common ancestor of humans and apes via the emergence of GLUD2, a gene encoding the human glutamate dehydrogenase 2 (hGDH2) isoenzyme. Driven by positive selection, hGDH2 became adapted to function upon intense excitatory firing, a process central to the long-term strengthening of synaptic connections. It also gained expression in brain astrocytes and cortical pyramidal neurons, including the CA1-CA3 hippocampal cells, neurons crucial to cognition. In mice transgenic for GLUD2, theta-burst-evoked long-term potentiation (LTP) is markedly enhanced in hippocampal CA3-CA1 synapses, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA receptor currents. D-lactate blocked LTP enhancement, implying that glutamate metabolism via hGDH2 potentiates L-lactate-dependent glia-neuron interaction, a process essential to memory consolidation. The transgenic (Tg) mice exhibited increased dendritic spine density/synaptogenesis in the hippocampus and improved complex cognitive functions. Hence, enhancement of neuron-glia communication, via GLUD2 evolution, likely contributed to human cognitive advancement by potentiating synaptic plasticity and inter-neuronal connectivity.
Collapse
Affiliation(s)
- Andreas Plaitakis
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Voutes, 71003 Heraklion, Crete, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), 70013 Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ionela Litso
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
| | - Ioannis Zaganas
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| | - Cleanthe Spanaki
- Department of Neurology, School of Health Sciences, Faculty of Medicine, University of Crete, Voutes, 71003 Heraklion, Crete, Greece; (D.K.); (I.L.); (I.Z.)
- Neurology Department, PaGNI University General Hospital of Heraklion, 71500 Heraklion, Crete, Greece
| |
Collapse
|
3
|
Spanaki C, Sidiropoulou K, Petraki Z, Diskos K, Konstantoudaki X, Volitaki E, Mylonaki K, Savvaki M, Plaitakis A. Glutamate-specific gene linked to human brain evolution enhances synaptic plasticity and cognitive processes. iScience 2024; 27:108821. [PMID: 38333701 PMCID: PMC10850756 DOI: 10.1016/j.isci.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/18/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
The human brain is characterized by the upregulation of synaptic, mainly glutamatergic, transmission, but its evolutionary origin(s) remain elusive. Here we approached this fundamental question by studying mice transgenic (Tg) for GLUD2, a human gene involved in glutamate metabolism that emerged in the hominoid and evolved concomitantly with brain expansion. We demonstrate that Tg mice express the human enzyme in hippocampal astrocytes and CA1-CA3 pyramidal neurons. LTP, evoked by theta-burst stimulation, is markedly enhanced in the CA3-CA1 synapses of Tg mice, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA currents. LTP enhancement is blocked by D-lactate, implying that GLUD2 potentiates L-lactate-mediated astrocyte-neuron interaction. Dendritic spine density and synaptogenesis are increased in the hippocampus of Tg mice, which exhibit enhanced responses to sensory stimuli and improved performance on complex memory tasks. Hence, GLUD2 likely contributed to human brain evolution by enhancing synaptic plasticity and metabolic processes central to cognitive functions.
Collapse
Affiliation(s)
- Cleanthe Spanaki
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
- PaGNI University Hospital of Irakleio, Neurology Department, Iraklion, Crete, Greece
| | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Voutes, Iraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Iraklion, Greece
| | - Zoe Petraki
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
| | - Konstantinos Diskos
- Department of Biology, University of Crete, Voutes, Iraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Iraklion, Greece
| | | | - Emmanouela Volitaki
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
- Department of Biology, University of Crete, Voutes, Iraklion, Crete, Greece
| | - Konstantina Mylonaki
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
| | - Maria Savvaki
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
| | - Andreas Plaitakis
- Department of Neurology, School of Health Sciences, University of Crete, Voutes, Iraklion, Crete, Greece
| |
Collapse
|
4
|
Vedelek V, Vedelek B, Lőrincz P, Juhász G, Sinka R. A comparative analysis of fruit fly and human glutamate dehydrogenases in Drosophila melanogaster sperm development. Front Cell Dev Biol 2023; 11:1281487. [PMID: 38020911 PMCID: PMC10652781 DOI: 10.3389/fcell.2023.1281487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
- Hungarian Research Network, Biological Research Centre, Developmental Genetics Unit, Szeged, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Pan C, Mao S, Xiong Z, Chen Z, Xu N. Glutamate dehydrogenase: Potential therapeutic targets for neurodegenerative disease. Eur J Pharmacol 2023; 950:175733. [PMID: 37116563 DOI: 10.1016/j.ejphar.2023.175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Glutamate dehydrogenase (GDH) is a key enzyme in mammalian glutamate metabolism. It is located at the intersection of multiple metabolic pathways and participates in a variety of cellular activities. GDH activity is strictly regulated by a variety of allosteric compounds. Here, we review the unique distribution and expressions of GDH in the brain nervous system. GDH plays an essential role in the glutamate-glutamine-GABA cycle between astrocytes and neurons. The dysfunction of GDH may induce the occurrence of many neurodegenerative diseases, such as Parkinson's disease, epilepsy, Alzheimer's disease, schizophrenia, and frontotemporal dementia. GDH activators and gene therapy have been found to protect neurons and improve motor disorders in neurodegenerative diseases caused by glutamate metabolism disorders. To date, no medicine has been discovered that specifically targets neurodegenerative diseases, although several potential medicines are used clinically. Targeting GDH to treat neurodegenerative diseases is expected to provide new insights and treatment strategies.
Collapse
Affiliation(s)
- Chuqiao Pan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Shijie Mao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zeping Xiong
- Department of Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zhao Chen
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Dimovasili C, Fadouloglou VE, Kefala A, Providaki M, Kotsifaki D, Kanavouras K, Sarrou I, Plaitakis A, Zaganas I, Kokkinidis M. Crystal structure of glutamate dehydrogenase 2, a positively selected novel human enzyme involved in brain biology and cancer pathophysiology. J Neurochem 2021; 157:802-815. [PMID: 33421122 DOI: 10.1111/jnc.15296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Mammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful. Comparison of the hGDH1/hGDH2 structures would enable a detailed understanding of their evolutionary differences. This work aimed at the determination of the hGDH2 crystal structure and the analysis of its functional implications. Recombinant hGDH2 was produced in the Spodoptera frugiperda ovarian cell line Sf21, using the Baculovirus expression system. Purification was achieved via a two-step chromatography procedure. hGDH2 was crystallized, X-ray diffraction data were collected using synchrotron radiation and the structure was determined by molecular replacement. The hGDH2 structure is reported at a resolution of 2.9 Å. The enzyme adopts a novel semi-closed conformation, which is an intermediate between known open and closed GDH1 conformations, differing from both. The structure enabled us to dissect previously reported biochemical findings and to structurally interpret the effects of evolutionary amino acid substitutions, including Arg470His, on ADP affinity. In conclusion, our data provide insights into the structural basis of hGDH2 properties, the functional evolution of hGDH isoenzymes, and open new prospects for drug design, especially for cancer therapeutics.
Collapse
Affiliation(s)
- Christina Dimovasili
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.,Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vasiliki E Fadouloglou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aikaterini Kefala
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Mary Providaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kanavouras
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Neurology, "G. Gennimatas" General Hospital, Athens, Greece
| | - Iosifina Sarrou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Center for Free-Electron Laser Science/DESY, Hamburg, Germany
| | - Andreas Plaitakis
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Petraki Z, Droubogiannis S, Mylonaki K, Chlouverakis G, Plaitakis A, Spanaki C. Transgenic expression of the positive selected human GLUD2 gene improves in vivo glucose homeostasis by regulating basic insulin secretion. Metabolism 2019; 100:153958. [PMID: 31400387 DOI: 10.1016/j.metabol.2019.153958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/24/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022]
Abstract
Glutamate dehydrogenase 1 (GDH1) contributes to glucose-stimulated insulin secretion in murine β-cells, but not to basic insulin release. The implications of these findings for human biology are unclear as humans have two GDH-specific enzymes: hGDH1 (GLUD1-encoded) and hGDH2 (GLUD2-encoded), a novel enzyme that is highly activated by ADP and L-leucine. Here we studied in vivo glucose homeostasis in transgenic (Tg) mice generated by inserting the GLUD2 gene and its putative regulatory elements into their genome. Using specific antibodies, we observed that hGDH2 was co-expressed with the endogenous murine GDH1 in pancreatic β-cells of Tg mice. Fasting blood glucose (FBG) levels were lower and of a narrower range in Tg (95% CI: 90.6-96.8 mg/dl; N = 26) than in Wt mice (95% CI: 136.2-151.4 mg/dl; N = 23; p < 0.0001), closely resembling those of healthy humans. GLUD2 also protected the host mouse from developing diabetes with advancing age. Tg animals maintained 2.6-fold higher fasting serum insulin levels (mean ± SD: 1.63 ± 0.15 ng/ml; N = 12) than Wt mice (0.63 ± 0.05 ng/ml; N = 12; p < 0.0001). Glucose loading (1 mg/g, given i.p.) induced comparable serum insulin increases in Tg and Wt mice, suggesting no significant GLUD2 effect on glucose-stimulated insulin release. L-leucine (0.25 mg/g given orally) induced a 2-fold increase in the serum insulin of the Wt mice, implying significant activation of the endogenous GDH1. However, L-leucine had little effect on the high insulin levels of the Tg mice, suggesting that, under the high ADP levels that prevail in β-cells in the fasting state, glutamate flux through hGDH2 is close to maximal. Hence, the present data, showing that GLUD2 expression in Tg mice improves in vivo glucose homeostasis by boosting fasting serum insulin levels, suggest that evolutionary adaptation of hGDH2 has enabled humans to achieve narrow-range euglycemia by regulating glutamate-mediated basal insulin secretion.
Collapse
Affiliation(s)
- Zoe Petraki
- Department of Neurology, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece
| | - Stavros Droubogiannis
- Department of Neurology, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece
| | - Konstantina Mylonaki
- Department of Neurology, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece
| | - Gregory Chlouverakis
- Department of Social Medicine, Biostatistics Lab, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece
| | - Andreas Plaitakis
- Department of Neurology, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece
| | - Cleanthe Spanaki
- Department of Neurology, School of Medicine, University of Crete, Voutes Place, 71500 Heraklion, Crete, Greece.
| |
Collapse
|
8
|
Dai Q, Likes CE, Luz AL, Mao L, Yeh JS, Wei Z, Kuchibhatla M, Ilkayeva OR, Koves TR, Price TM. A Mitochondrial Progesterone Receptor Increases Cardiac Beta-Oxidation and Remodeling. J Endocr Soc 2019; 3:446-467. [PMID: 30746505 PMCID: PMC6364628 DOI: 10.1210/js.2018-00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022] Open
Abstract
Progesterone is primarily a pregnancy-related hormone, produced in substantial quantities after ovulation and during gestation. Traditionally known to function via nuclear receptors for transcriptional regulation, there is also evidence of nonnuclear action. A previously identified mitochondrial progesterone receptor (PR-M) increases cellular respiration in cell models. In these studies, we demonstrated that expression of PR-M in rat H9c2 cardiomyocytes resulted in a ligand-dependent increase in oxidative cellular respiration and beta-oxidation. Cardiac expression in a TET-On transgenic mouse resulted in gene expression of myofibril proteins for remodeling and proteins involved in oxidative phosphorylation and fatty acid metabolism. In a model of increased afterload from constant transverse aortic constriction, mice expressing PR-M showed a ligand-dependent preservation of cardiac function. From these observations, we propose that PR-M is responsible for progesterone-induced increases in cellular energy production and cardiac remodeling to meet the physiological demands of pregnancy.
Collapse
Affiliation(s)
- Qunsheng Dai
- Division of Reproductive Endocrinology, Duke University, Durham, North Carolina
| | - Creighton E Likes
- Division of Reproductive Endocrinology, Duke University, Durham, North Carolina
| | - Anthony L Luz
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lan Mao
- Division of Cardiology, Duke University, Durham, North Carolina
| | - Jason S Yeh
- Division of Reproductive Endocrinology, Duke University, Durham, North Carolina
| | - Zhengzheng Wei
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina
| | - Maragatha Kuchibhatla
- Division of Biostatistics and Bioinformatics, Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina.,Division of Geriatrics, Duke University, Durham, North Carolina
| | - Thomas M Price
- Division of Reproductive Endocrinology, Duke University, Durham, North Carolina
| |
Collapse
|