1
|
Xiao T, Yu X, Tao J, Yang L, Duan X. Metabolomics-Based Study of the Protective Effect of 4-Hydroxybenzyl Alcohol on Ischemic Astrocytes. Int J Mol Sci 2024; 25:9907. [PMID: 39337395 PMCID: PMC11432256 DOI: 10.3390/ijms25189907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Ischemic stroke is a common and dangerous disease in clinical practice. Astrocytes (ASs) are essential for maintaining the metabolic balance of the affected regions during the disease process. 4-Hydroxybenzyl alcohol (4HBA) from Gastrodia elata Bl. has potential neuroprotective properties due to its ability to cross the blood-brain barrier. In an in vitro experiment, we replicated the oxygen-glucose deprivation/reoxygenation model, and used methyl thiazoly tertrazolium, flow cytometry, kits, and other technical means to clarify the protective effect of 4HBA on primary ASs. In in vivo experiments, the 2VO model was replicated, and immunofluorescence and immunohistochemistry techniques were used to clarify the protective effect of 4HBA on ASs and the maintenance of the blood-brain barrier. Differential metabolites and related pathways were screened and verified using metabolomics analysis and western blot. 4HBA noticeably amplified AS cell survival, reduced mitochondrial dysfunction, and mitigated oxidative stress. It demonstrated a protective effect on ASs in both environments and was instrumental in stabilizing the blood-brain barrier. Metabolomic data indicated that 4HBA regulated nucleic acid and glutathione metabolism, influencing purines, pyrimidines, and amino acids, and it activated the N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway via N-methyl-D-aspartate R1/N-methyl-D-aspartate 2C receptors. Our findings suggest that 4HBA is a potent neuroprotective agent against ischemic stroke, enhancing AS cell survival and function while stabilizing the blood-brain barrier. The N-methyl-D-aspartate/p-cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway is activated by 4HBA.
Collapse
Affiliation(s)
- Tian Xiao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xingzhi Yu
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jie Tao
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
2
|
Wang X, Yang J, Huang P, Wang D, Zhang Z, Zhou Z, Liang L, Yao R, Yang L. Cytisine: State of the art in pharmacological activities and pharmacokinetics. Biomed Pharmacother 2024; 171:116210. [PMID: 38271893 DOI: 10.1016/j.biopha.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Cytisine is a naturally occurring bioactive compound, an alkaloid mainly isolated from legume plants. In recent years, various biological activities of cytisine have been explored, showing certain effects in smoking cessation, reducing drinking behavior, anti-tumor, cardiovascular protection, blood sugar regulation, neuroprotection, osteoporosis prevention and treatment, etc. At the same time, cytisine has the advantages of high efficiency, safety, and low cost, has broad development prospects, and is a drug of great application value. However, a summary of cytisine's biological activities is currently lacking. Therefore, this paper summarizes the pharmacological action, mechanism, and pharmacokinetics of cytisine by referring to numerous databases, and analyzes the new and core targets of cytisine with the help of computer simulation technology, to provide reference for doctors.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
4
|
Liu TT, Shi X, Hu HW, Chen JP, Jiang Q, Zhen YF, Cao C, Liu XW, Liu JG. Endothelial cell-derived RSPO3 activates Gαi1/3-Erk signaling and protects neurons from ischemia/reperfusion injury. Cell Death Dis 2023; 14:654. [PMID: 37805583 PMCID: PMC10560285 DOI: 10.1038/s41419-023-06176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The current study explores the potential function and the underlying mechanisms of endothelial cell-derived R-spondin 3 (RSPO3) neuroprotection against ischemia/reperfusion-induced neuronal cell injury. In both neuronal cells (Neuro-2a) and primary murine cortical neurons, pretreatment with RSPO3 ameliorated oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced neuronal cell death and oxidative injury. In neurons RSPO3 activated the Akt, Erk and β-Catenin signaling cascade, but only Erk inhibitors reversed RSPO3-induced neuroprotection against OGD/R. In mouse embryonic fibroblasts (MEFs) and neuronal cells, RSPO3-induced LGR4-Gab1-Gαi1/3 association was required for Erk activation, and either silencing or knockout of Gαi1 and Gαi3 abolished RSPO3-induced neuroprotection. In mice, middle cerebral artery occlusion (MCAO) increased RSPO3 expression and Erk activation in ischemic penumbra brain tissues. Endothelial knockdown or knockout of RSPO3 inhibited Erk activation in the ischemic penumbra brain tissues and increased MCAO-induced cerebral ischemic injury in mice. Conversely, endothelial overexpression of RSPO3 ameliorated MCAO-induced cerebral ischemic injury. We conclude that RSPO3 activates Gαi1/3-Erk signaling to protect neuronal cells from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ting-Tao Liu
- Shandong University, Department of Neurology, Shandong Provincial Hospital, Jinan, China
- Department of Neurology, Shouguang Hospital of T.C.M, Shouguang, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Ping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, China
| | - Qin Jiang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yun-Fang Zhen
- Department of Orthopedics, Children's hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xue-Wu Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jian-Gang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Zhou Y, Zhang X, Yang H, Chu B, Zhen M, Zhang J, Yang L. Mechanism of cAMP Response Element-binding Protein 1/Death-associated Protein Kinase 1 Axis-mediated Hippocampal Neuron Apoptosis in Rat Brain Injury After Cardiopulmonary Resuscitation. Neuroscience 2023; 526:175-184. [PMID: 37406926 DOI: 10.1016/j.neuroscience.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Brain injury represents a leading cause of deaths following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). This study explores the role of CREB1 (cAMP responsive element binding protein 1)/DAPK1 (death associated protein kinase 1) axis in brain injury after CPR. CA was induced by asphyxia in rats, followed by CPR. After CREB1 over-expression, the survival rate and neurological function score of rats were measured. Nissl and TUNEL staining evaluated the pathological condition of hippocampus and apoptosis of hippocampal neurons respectively. H19-7 cells were subjected to OGD/R and infected with oe-CREB1. CCK-8 assay and flow cytometry measured the cell viability and apoptosis. CREB1, DAPK1, and cleaved Caspase-3 expressions were examined using Western blot. The binding between CREB1 and DAPK1 was determined using ChIP and dual-luciferase reporter assays. CREB1 was poorly expressed while DAPK1 was highly expressed in rat hippocampus after CPR. CREB1 overexpression improved rat neurological function, repressed neuron apoptosis, and reduced cleaved Caspase-3 expression. CREB1 was enriched on the DAPK1 promoter and suppressed DAPK1 expression. DAPK1 overexpression reversed the inhibition of OGD/R-insulted apoptosis by CREB1 overexpression. To conclude, CREB1 suppresses hippocampal neuron apoptosis and mitigates brain injury after CPR by inhibiting DAPK1 expression.
Collapse
Affiliation(s)
- Yadong Zhou
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xianjing Zhang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Hui Yang
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Bo Chu
- Department of Emergency, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Maochuan Zhen
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Junli Zhang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Lin Yang
- Department of Hospital Infection Management, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
6
|
Chen Y, Zhang L, Yang Z, Yu J. Curcumin inhibits cerebral ischaemia-reperfusion injury and cell apoptosis in rats through the ERK-CHOP-caspase-11 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:854-861. [PMID: 35594387 PMCID: PMC9132463 DOI: 10.1080/13880209.2022.2069271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Curcumin has a significant effect on cerebral ischaemia-reperfusion injury (CIRI). However, the underlying mechanism is less studied. OBJECTIVE This study investigates the role and mechanism of curcumin in CIRI. MATERIALS AND METHODS CIRI model Sprague-Dawley rats were divided into model, positive control and curcumin low/middle/high dose (50, 100 and 200 mg/kg/d) groups (n = 10 each). Drug intervention was administered by gavage once a day for 4 weeks. We calculated the neurobehavioural score and observed the cerebral infarct volume. Glial cytopathological changes were observed after haematoxylin-eosin staining. Apoptosis was detected by TUNEL (TdT mediated dUTP nick end labelling). Extracellular signal-regulated protein kinase (ERK), C/EBP-homologous protein (CHOP) and caspase-11 mRNA were detected by real-time PCR. Phosphorylated ERK (p-ERK), phosphorylated CHOP (p-CHOP) and caspase-11 were detected by Western blot. Superoxide dismutase (SOD) activity was detected by xanthine oxidation method; malondialdehyde (MDA) content by thiobarbituric acid colorimetry; and, glutathione (GSH) by spectrophotometry. RESULTS Compared with control, the neurobehavioural scores, neuronal apoptosis, MDA, IL-1β, IL-18, mRNAs and protein levels of ERK/p-ERK, CHOP/p-CHOP and caspase-11 in model group were significantly higher (p < 0.01). Compared with model, the positive control and medium/high dose curcumin groups were significantly lower (p < 0.01). However, SOD and GSH decreased significantly in model group but increased significantly in positive control and medium/high dose curcumin groups (p < 0.01). Moreover, curcumin significantly alleviated ischaemic state and neuroinflammation (p < 0.01). DISCUSSION AND CONCLUSIONS Curcumin may alleviate CIRI through ERK-CHOP-caspase-11 pathway. Our results may provide new insights into the pathogenesis of CIRI, and contribute to the development of treatment strategies for CIRI.
Collapse
Affiliation(s)
- Yue Chen
- Department of Pediatrics, The Center Hospital of Cangzhou, Cangzhou, China
| | - Lixia Zhang
- Department of Pediatrics, The Peoples Hospital of Hejian, Hejian, China
| | - Zengtai Yang
- Cardiology Department, The Peoples Hospital of Hejian, Hejian, China
| | - Jie Yu
- Department of Pediatrics, The Center Hospital of Cangzhou, Cangzhou, China
| |
Collapse
|
7
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
8
|
Lan X, Xu Y. Protective role of lidocaine against cerebral ischemia-reperfusion injury: An in vitro study. Exp Ther Med 2021; 23:42. [PMID: 34849157 PMCID: PMC8613535 DOI: 10.3892/etm.2021.10964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lidocaine, a local anesthetic, is a valuable agent for the treatment of neuronal ischemia/reperfusion (I/R) injury. The aim of the present study was to investigate the role of lidocaine in oxygen-glucose deprivation/reperfusion (OGD/R)-induced cortical neurons and explore the related molecular mechanisms. Cerebral cortical neurons were isolated from Sprague-Dawley rat embryos and stimulated with OGD/R to establish an in vitro I/R injury model. Subsequently, neuronal cell viability, cytotoxicity and apoptosis were evaluated by performing the MTT assay, lactate dehydrogenase (LDH) assay and flow cytometry, respectively. The results suggested that OGD/R exposure significantly decreased cerebral cortical neuron cell viability, accelerated LDH release and induced cell apoptosis compared with control neurons, indicating that cerebral I/R injury was stimulated by OGD/R treatment. Further investigation indicated that 10 µM lidocaine significantly enhanced neuronal cell viability, and reduced LDH release and neuronal cell apoptosis in OGD/R-exposed cells compared with the OGD/R + saline group, which indicated that lidocaine displayed neuroprotective effects against I/R damage. In addition, the findings of the present study suggested that OGD/R exposure significantly decreased Bcl-2 and Bcl-xl protein expression levels, but increased Bax protein expression levels, the Bax/Bcl-2 ratio and caspase-3 activity compared with control neurons. However, lidocaine reversed OGD/R-mediated alterations to apoptosis-related protein expression. Furthermore, the results of the present study indicated that lidocaine increased Wnt3a, β-catenin and cyclin D1 expression levels in OGD/R-exposed cells compared with the OGD/R + saline group, thus activating the Wnt/β-catenin signaling pathway. The findings of the present study suggested that lidocaine served a protective role in OGD/R-triggered neuronal damage by activating the Wnt/β-catenin signaling pathway; therefore, lidocaine may serve as a potential candidate for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaoyang Lan
- Department of Neurology, First Medical Center, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yumin Xu
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
9
|
Li G, Cao F, Jin Y, Wang Y, Wang D, Zhou L. Role of NR2B/ERK signaling in the neuroprotective effect of dexmedetomidine against sevoflurane induced neurological dysfunction in the developing rat brain. Acta Neurobiol Exp (Wars) 2021; 81:271-278. [PMID: 34672297 DOI: 10.21307/ane-2021-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dexmedetomidine (DEX) is a potent α‑2 adrenergic receptor agonist and has been widely applied in clinic. The present study explored the protective effect of DEX on sevoflurane‑induced learning and cognitive impairment and examined its underlying mechanism. Sprague‑Dawley rat pups were exposed to 0.85% sevoflurane for 6 h and injected with DEX in different doses. The Morris water maze test was performed to evaluate the learning and memory function of rats. Western blot was used for the measurement of protein levels. The water maze results indicated that sevoflurane treatment increased the escape latency but reduced the time spent in the original quadrant of rats. The protein levels of NR2B, phosphorylated ERK were significantly influenced by sevoflurane. Ifenprodil administration alleviated sevoflurane‑induced neurological impairment. DEX treatment reversed the effect of sevoflurane on both escape latency and time in original quadrant in a dose manner, and pretreatment with DEX had the most dramatic effect. DEX regulated the NR2B/ERK signaling in sevoflurane treated rats. NR2B/ERK signaling is involved in sevoflurane induced neurological impairment. DEX may protect against sevoflurane induced neurological dysfunction in the developing rat brain via regulating the NR2B/ERK signaling.
Collapse
Affiliation(s)
- Guohua Li
- Department of Anesthesiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, P.R. China
| | - Fang Cao
- Department of Orthopaedics, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, P.R. China
| | - Yanwu Jin
- Department of Anesthesiology, the Second Hospital of Shandong University, Shandong University, Jinan, Shandong, P.R. China
| | - Yu Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, P.R. China
| | - Dawei Wang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Limin Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, P.R. China;
| |
Collapse
|
10
|
Liu W, Ye Q, Xi W, Li Y, Zhou X, Wang Y, Ye Z, Hai K. The ERK/CREB/PTN/syndecan-3 pathway involves in heparin-mediated neuro-protection and neuro-regeneration against cerebral ischemia-reperfusion injury following cardiac arrest. Int Immunopharmacol 2021; 98:107689. [PMID: 34153666 DOI: 10.1016/j.intimp.2021.107689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Heparin, a commonly used anticoagulant, has been found to improve cerebral ischemia-reperfusion injury (CIR-CA) following cardiopulmonary resuscitation (CPR). Here, we aimed to explore the role of pleiotrophin (PTN)/syndecan-3 pathway in heparin therapy for CIR-CA. MATERIALS AND METHODS The CA-CPR model was constructed in Sprague-Dawley (SD) rats, which were treated with low molecular weight heparin, and the neurological changes and brain histopathological changes were evaluated. For in-vitro experiments, the ischemic injury model of primary neurons was established by oxygen and glucose deprivation (OGD), and the neuron regeneration was detected via the Cell counting Kit-8 (CCK8) method, flow cytometry and microscopy. CREB antagonist (KG-501), ERK antagonist (PD98059) and si-PTN were used respectively to inhibit the expression of CREB, ERK and PTN in cells, so as to explore the role of heparin in regulating neuronal regeneration. RESULTS Compared with the sham rats, the neurological deficits and cerebral edema of CA-CPR rats were significantly improved after heparin treatment. Heparin also attenuated OGD-mediated neuronal apoptosis and promoted neurite outgrowth in vitro. Moreover, heparin attenuated CA-CPR-mediated neuronal apoptosis and microglial neuroinflammation. In terms of the mechanism, heparin upregulated the expression of ERK, CREB, NF200, BDNF, NGF, PTN and syndecan-3 in the rat brains. Inhibition of ERK, CREB and interference with PTN expression notably weakened the heparin-mediated neuroprotective effects and restrained the expression of ERK/CREB and PTN/syndecan-3 pathway. CONCLUSION Heparin attenuates the secondary brain injury induced by CA-CPR through regulating the ERK/CREB-mediated PTN/syndecan-3 pathway.
Collapse
Affiliation(s)
- Wenxun Liu
- Ningxia Medical University, Yinchuan 750004, Ningxia, China; Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Qingshan Ye
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Wenhua Xi
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yan Li
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaohong Zhou
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
| | - Yun Wang
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China
| | - Zhenhai Ye
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
| | - Kerong Hai
- Department of Anesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China; Ningxia Anesthesia Clinincal Medical Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
11
|
Kushwah N, Jain V, Kadam M, Kumar R, Dheer A, Prasad D, Kumar B, Khan N. Ginkgo biloba L. Prevents Hypobaric Hypoxia-Induced Spatial Memory Deficit Through Small Conductance Calcium-Activated Potassium Channel Inhibition: The Role of ERK/CaMKII/CREB Signaling. Front Pharmacol 2021; 12:669701. [PMID: 34326768 PMCID: PMC8313424 DOI: 10.3389/fphar.2021.669701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Hypobaric hypoxia (HH) is a stressful condition, which is more common at high altitudes and can impair cognitive functions. Ginkgo biloba L. leaf extract (GBE) is widely used as herbal medicine against different disorders. Its ability to improve cognitive functions, reduce oxidative stress, and promote cell survival makes it a putative therapeutic candidate against HH. The present study has been designed to explore the effect of GBE on HH-induced neurodegeneration and memory impairment as well as possible signaling mechanisms involved. 220–250 gm (approximately 6- to 8-week-old) Sprague Dawley rats were randomly divided into different groups. GBE was orally administered to respective groups at a dose of 100 mg/kg/day throughout the HH exposure, i.e., 14 days. Memory testing was performed followed by hippocampus isolation for further processing of different molecular and morphological parameters related to cognition. The results indicated that GBE ameliorates HH-induced memory impairment and oxidative damage and reduces apoptosis. Moreover, GBE modulates the activity of the small conductance calcium-activated potassium channels, which further reduces glutamate excitotoxicity and apoptosis. The exploration of the downstream signaling pathway demonstrated that GBE administration prevents HH-induced small conductance calcium-activated potassium channel activation, and that initiates pro-survival machinery by activating extracellular signal–regulated kinase (ERK)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP response element–binding protein (CREB) signaling pathway. In summary, the current study demonstrates the beneficial effect of GBE on conditions like HH and provides various therapeutic targets involved in the mechanism of action of GBE-mediated neuroprotection.
Collapse
Affiliation(s)
- Neetu Kushwah
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Vishal Jain
- Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manisha Kadam
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Rahul Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Aastha Dheer
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Dipti Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Bhuvnesh Kumar
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India.,Department of Neurophysiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Nilofar Khan
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
12
|
Zhao Y, Yang S, Guo Q, Guo Y, Zheng Y, Ji E. Shashen-Maidong Decoction improved chronic intermittent hypoxia-induced cognitive impairment through regulating glutamatergic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114040. [PMID: 33794336 DOI: 10.1016/j.jep.2021.114040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH), which is associated with cognitive impairment. Previous study suggested CIH exposure could induce similar symptoms and signs to the clinical features of Deficiency of both Qi and Yin Syndrome (DQYS) in Traditional Chinese Medicine (TCM). Shashen-Maidong Decoction (SMD) has been applied clinically for DQYS for hundred years. However, SMD treatment could be beneficial to CIH induced cognitive impairment is still unclear. AIM OF THE STUDY Therefore, the aim of this study was to investigate the effect of SMD treatment on CIH induced cognitive impairment, and to explore the related neuroprotective mechanism. MATERIALS AND METHODS Mice were exposed to CIH for 5 weeks (8 h/day) and were orally treated with either vehicle or SMD (5.265 g/kg/day) 30 min before CIH exposure. Spatial memory was evaluated by Morris Water Maze and Y-Maze test. Synaptic morphology in hippocampus was observed by Golgi-Cox staining and Electron microscope, and NR2B-ERK signaling pathway were detected by western blotting. RESULTS Our results showed that SMD treatment improved performance in either Morris Water Maze or Y-Maze test in mice exposed to CIH, increased spine density and postsynaptic density (PSD) thickness in hippocampus. SMD treatment suppressed the over-activation of NR2B/CaMKII/SynGAP induced by CIH exposure, enhanced ERK/CREB phosphorylation and increased PSD-95 and BDNF expression. CONCLUSION SMD attenuates the CIH-induced cognitive impairment through regulating NR2B-ERK signaling pathway. Additionally, our findings provided that DQYS may be the potential therapeutic target for neurocognitive diseases in patients with OSA.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Qiuhong Guo
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Yajing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Zheng JJ, Zhang TY, Liu HT, Huang ZX, Teng JM, Deng JX, Zhong JG, Qian X, Sheng XW, Ding JQ, He SQ, Zhao X, Ji WD, Qi DF, Li W, Zhang M. Cytisine Exerts an Anti-Epileptic Effect via α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. Front Pharmacol 2021; 12:706225. [PMID: 34248648 PMCID: PMC8263902 DOI: 10.3389/fphar.2021.706225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4β2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.
Collapse
Affiliation(s)
- Jing-Jun Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Teng-Yue Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Tao Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xin Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Mei Teng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Xian Deng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Gui Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xu Qian
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Wen Sheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ji-Qiang Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Qiao He
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Xin Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Feng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hop-ital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mei Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|
15
|
Li Y, Zhang X, Ma A, Kang Y. Rational Application of β-Hydroxybutyrate Attenuates Ischemic Stroke by Suppressing Oxidative Stress and Mitochondrial-Dependent Apoptosis via Activation of the Erk/CREB/eNOS Pathway. ACS Chem Neurosci 2021; 12:1219-1227. [PMID: 33739811 DOI: 10.1021/acschemneuro.1c00046] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is one of the leading causes of disability and death. Increasing evidence indicates that β-hydroxybutyrate (BHB) exerts beneficial effects in treating stroke, but the underlying mechanism remains largely unknown. In this study, we injected different doses of BHB into the lateral ventricle in middle cerebral artery occlusion (MCAO) model rats and neuronal cells were treated with different doses of BHB followed by oxygen-glucose deprivation (OGD). We found that a moderate dose of BHB enhanced mitochondrial complex I respiratory chain complex I activity, reduced oxidative stress, inhibited mitochondrial apoptosis, improved neurological scores, and reduced infarct volume after ischemia. We further showed that the effects of BHB were achieved by upregulating the dedicated BHB transporter SMCT1 and activating the Erk/CREB/eNOS pathway. These results provide us with a foundation for a novel understanding of the neuroprotective effects of BHB in stroke.
Collapse
Affiliation(s)
- Yang Li
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Xuepeng Zhang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Aijia Ma
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yan Kang
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
16
|
Liu S, Liu C, Xiong L, Xie J, Huang C, Pi R, Huang Z, Li L. Icaritin Alleviates Glutamate-Induced Neuronal Damage by Inactivating GluN2B-Containing NMDARs Through the ERK/DAPK1 Pathway. Front Neurosci 2021; 15:525615. [PMID: 33692666 PMCID: PMC7937872 DOI: 10.3389/fnins.2021.525615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023] Open
Abstract
Excitatory toxicity due to excessive glutamate release is considered the core pathophysiological mechanism of cerebral ischemia. It is primarily mediated by N-methyl-D-aspartate receptors (NMDARs) on neuronal membranes. Our previous studies have found that icaritin (ICT) exhibits neuroprotective effects against cerebral ischemia in rats, but the underlying mechanism is unclear. This study aims to investigate the protective effect of ICT on glutamate-induced neuronal injury and uncover its possible molecular mechanism. An excitatory toxicity injury model was created using rat primary cortical neurons treated with glutamate and glycine. The results showed that ICT has neuroprotective effects on glutamate-treated primary cortical neurons by increasing cell viability while reducing the rate of lactate dehydrogenase (LDH) release and reducing apoptosis. Remarkably, ICT rescued the changes in the ERK/DAPK1 signaling pathway after glutamate treatment by increasing the expression levels of p-ERK, p-DAPK1 and t-DAPK1. In addition, ICT also regulates NMDAR function during glutamate-induced injury by decreasing the expression level of the GluN2B subunit and enhancing the expression level of the GluN2A subunit. As cotreatment with the ERK-specific inhibitor U0126 and ICT abolishes the beneficial effects of ITC on the ERK/DAPK1 pathway, NMDAR subtypes and neuronal cell survival, ERK is recognized as a crucial mediator in the protective mechanism of ICT. In conclusion, our findings demonstrate that ICT has a neuroprotective effect on neuronal damage induced by glutamate, and its mechanism may be related to inactivating GluN2B-containing NMDAR through the ERK/DAPK1 pathway. This study provides a new clue for the prevention and treatment of clinical ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chaoming Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Lijiao Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute for Medical Sciences of Pain, Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Liangdong Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
17
|
Qian Z, Zhong Z, Ni S, Li D, Zhang F, Zhou Y, Kang Z, Qian J, Yu B. Cytisine attenuates bone loss of ovariectomy mouse by preventing RANKL-induced osteoclastogenesis. J Cell Mol Med 2020; 24:10112-10127. [PMID: 32790170 PMCID: PMC7520284 DOI: 10.1111/jcmm.15622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL-induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F-actin ring formation and tartrate-resistant acid phosphatase (TRAP) staining in dose-dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK-related trigger RANKL by phosphorylation JNK/ERK/p38-MAPK, IκBα/p65-NF-κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K-AKT-NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL-induced RANK-TRAF6 association and RANKL-related gene and protein markers such as NFATc1, Cathepsin K, MMP-9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.
Collapse
Affiliation(s)
- Zhi Qian
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
- Department of Orthopaedic SurgeryZhangye People's Hospital affiliated to Hexi UniversityZhangye CityChina
| | - Zeyuan Zhong
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Shuo Ni
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Dejian Li
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Fangxue Zhang
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Ying Zhou
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Zhanrong Kang
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| | - Jun Qian
- Department of Orthopaedic SurgeryZhangye People's Hospital affiliated to Hexi UniversityZhangye CityChina
| | - Baoqing Yu
- Department of Orthopaedic SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterHuinan TownChina
| |
Collapse
|
18
|
Huang X, Xu H. Advances on the Bioactivities, Total Synthesis, Structural Modification, and Structure-Activity Relationships of Cytisine Derivatives. Mini Rev Med Chem 2020; 20:369-395. [DOI: 10.2174/1389557519666191104121821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/23/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023]
Abstract
Cytisine is a quinolizidine alkaloid isolated from various Leguminosae plants. Cytisine and
its derivatives exhibit a broad range of biological properties, such as smoking cessation aid, antidepressant,
neuroprotective, nootropic, anticancer, antiviral, antiparasitic, antidiabetic, insecticidal, and nematicidal
activities. In this review, the progress of cytisine and its derivatives in regard to bioactivities,
total synthesis, structural modifications focusing on their N-12 position and lactam ring is reported.
Additionally, the structure-activity relationships of cytisine and its derivatives are also discussed.
Collapse
Affiliation(s)
- Xiaobo Huang
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
19
|
Xiao H, Wang Y, Wu Y, Li H, Liang X, Lin Y, Kong L, Ni Y, Deng Y, Li Y, Li W, Yang J. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neurosci Res 2020; 164:33-45. [PMID: 32302734 DOI: 10.1016/j.neures.2020.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with notable factors of dysfunction in multiple neurological changes, encompassing neuronal loss in the frontal cortex and hippocampal regions. Dysfunction of proliferation and self-renewal of neural stem cells (NSCs) was observed in AD patients and animals. Thereby, mobilizing endogenous neurogenesis by pharmacological agents would provide a promising route for neurodegeneration. Osthole (Ost), a natural coumarin derivative, has been reported to exert extensive neuroprotective effects in AD. However, whether ost can facilitate endogenous neurogenesis against AD in vivo is still unknown. In this study, by using Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, Nissl staining, immunofluorescence analysis and western blot, we demonstrated that oral administration of ost could improve the learning and memory function, inhibit neuronal apoptosis, elevate the expression of glial cell line derived neurotrophic factor (GDNF), synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Moreover, ost could remarkably enhance proliferation of NSCs and increase the amount of mature neurons in APP/PS1 transgenic mice. Together, our findings demonstrated that ost possessed the ability of promoting endogenous neurogenesis and ost could be served as a plausible agent to reverse or slow down the progress of AD.
Collapse
Affiliation(s)
- Honghe Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Yuying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yutong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hongyan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xicai Liang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yin Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yingnan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Deng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wanyi Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
20
|
Mukai A, Suehiro K, Kimura A, Fujimoto Y, Funao T, Mori T, Nishikawa K. Protective effects of remote ischemic preconditioning against spinal cord ischemia-reperfusion injury in rats. J Thorac Cardiovasc Surg 2020; 163:e137-e156. [PMID: 32414598 DOI: 10.1016/j.jtcvs.2020.03.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We aimed to investigate the protective effect of remote ischemic preconditioning against spinal cord ischemia and find a clue to its mechanism by measuring glutamate concentrations in the spinal ventral horn. METHODS Male Sprague-Dawley rats were divided into 5 groups (n = 6 in each group) as follows: sham; SCI (only spinal cord ischemia); RIPC/SCI (perform remote ischemic preconditioning before spinal cord ischemia); MK-801/RIPC/SCI (administer MK-801, N-methyl-D-aspartate receptor antagonist, before remote ischemic preconditioning); and MK-801/SCI (administer MK-801 without remote ischemic preconditioning). Remote ischemic preconditioning was achieved by brief limb ischemia 80 minutes before spinal cord ischemia. MK-801 (1 mg/kg, intravenous) was administered 60 minutes before remote ischemic preconditioning. The glutamate concentration in the ventral horn was measured by microdialysis for 130 minutes after spinal cord ischemia. Immunofluorescence was also performed to evaluate the expression of N-methyl-D-aspartate receptor 2B subunit in the ventral horn 130 minutes after spinal cord ischemia. RESULTS The glutamate concentrations in the spinal cord ischemia group were significantly higher than in the sham group at all time points (P < .01). Remote ischemic preconditioning attenuated the spinal cord ischemia-induced glutamate increase. When MK-801 was preadministered before remote ischemic preconditioning, glutamate concentration was increased after spinal cord ischemia (P < .01). Immunofluorescence showed that remote ischemic preconditioning prevented the increase in the expression of N-methyl-D-aspartate receptor 2B subunit on the surface of motor neurons (P = .047). CONCLUSIONS Our results showed that remote ischemic preconditioning prevented spinal cord ischemia-induced extracellular glutamate increase in ventral horn and suppressed N-methyl-D-aspartate receptor 2B subunit expression.
Collapse
Affiliation(s)
- Akira Mukai
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Suehiro
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Aya Kimura
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Fujimoto
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomoharu Funao
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
21
|
Wei W, Lu M, Lan X, Liu N, Wang H, Du J, Sun T, Li Y, Yu J. Neuroprotective effect of Verbascoside on hypoxic-ischemic brain damage in neonatal rat. Neurosci Lett 2019; 711:134415. [PMID: 31408670 DOI: 10.1016/j.neulet.2019.134415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 01/30/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) leads to acute death and chronic neurological dysfunction in neonates. To date, there is no satisfactory acknowledged strategy to provide neuroprotection completely. Verbascoside (VB) has been proved to possess antioxidative, anti aging and neuroprotective activities. The aim of this study was to investigate whether VB provides neuroprotection to neonatal HIBD. Seven-day-old Sprague-Dawley rats were subjected to HIBD by permanent left carotid ligation for 2.5 h at 37 °C under hypoxic stress (8% O2, 92% N2). After VB treatment, early neurofunctions were assessed using the righting reflex and negative geotaxis reflex. 2, 3, 5-Triphenyltetrazolium chloride, Hematoxylin-Eosin, Nissl, and Fluoro-Jade B staining were used to evaluate the extent of brain damage. In addition, autophagy was observed by transmission electron microscopy, and the expression of autophagy-related proteins was measured using immunofluorescence and Western blot analysis. Results showed that administration of VB remarkably reduced neurofunctional latency, brain infarct volume, ameliorated neuronal damage and degeneration. Furthermore, VB decreased autophagosome formation, the Beclin-1 levels and LC3-II/I ratio with elevated levels of P62 in HIBD neonatal rats when compared to the HI group. These findings suggest that VB exerts potential neuroprotective effect against HIBD, which is at least partly to be mediated regulating autophagy.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Min Lu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Hui Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China; Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| |
Collapse
|
22
|
Echinacoside Alleviates Hypoxic-Ischemic Brain Injury in Neonatal Rat by Enhancing Antioxidant Capacity and Inhibiting Apoptosis. Neurochem Res 2019; 44:1582-1592. [PMID: 30911982 DOI: 10.1007/s11064-019-02782-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of death and disability in neonatal or perinatal all over the world, seriously affecting children, families and society. Unfortunately, only few satisfactory therapeutic strategies have been developed. It has been demonstrated that Echinacoside (ECH), the major active component of Cistanches Herba, exerts many beneficial effects, including antioxidative, anti-apoptosis, and neuroprotective in the traditional medical practice in China. Previous research has demonstrated that ECH plays a protective effect on ischemic brain injury. This study aimed to investigate whether ECH provides neuroprotection against HIBD in neonatal rats. We subjected 120 seven-day-old Sprague-Dawley rats to cerebral hypoxia-ischemia (HI) and randomly divided into the following groups: sham group, HI group and ECH (40, 80 and 160 mg/kg, intraperitoneal) post-administration group. After 48 h of HI, 2,3,5-Triphenyltetrazolium chloride, Hematoxylin-Eosin and Nissl staining were conducted to evaluate the extent of brain damage. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) production were assessed to determine the antioxidant capacity of ECH. TUNEL staining and Western blot analysis was performed to respectively estimate the extent of brain cell apoptosis and the expression level of the apoptosis-related proteins caspase-3, Bax, and Bcl-2. Results showed that ECH remarkably reduced the brain infarct volume and ameliorated the histopathological damage to neurons. ECH post-administration helped recovering the antioxidant enzyme activities and decreasing the MDA production. Furthermore, ECH treatment suppressed neuronal apoptosis in the rats with HIBD was by reduced TUNEL-positive neurons, the caspase-3 levels and increased the Bcl-2/Bax ratio. These results suggested that ECH treatment was beneficial to reducing neuronal damage by attenuating oxidative stress and apoptosis in the brain under HIBD.
Collapse
|