1
|
Bassiouni W, Mahmud Z, Simmen T, Seubert JM, Schulz R. MMP-2 inhibition attenuates ER stress-mediated cell death during myocardial ischemia-reperfusion injury by preserving IRE1α. J Mol Cell Cardiol 2024; 198:74-88. [PMID: 39622369 DOI: 10.1016/j.yjmcc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Endoplasmic reticulum (ER) stress is one of the major events accompanying myocardial ischemia-reperfusion (IR) injury, as hypoxia and oxidative stress disrupt protein folding in the ER. As a result, the unfolded protein response (UPR) is activated through different sensors including inositol-requiring enzyme 1α (IRE1α) and protein kinase R-like ER kinase (PERK). Failure of the UPR to reduce ER stress induces cellular dysfunction. Matrix metalloproteinase-2 (MMP-2) is a ubiquitous protease that is activated intracellularly in response to oxidative stress and partially localizes near the ER. However, its role in ER homeostasis is unknown. We hypothesized that MMP-2 is involved in the regulation of the UPR and ER stress-mediated apoptosis during IR injury. Isolated mouse hearts subjected to IR injury showed impaired recovery of post-ischemic contractile function compared to aerobically perfused controls. Ventricular extracts from IR hearts had higher levels of glucose-regulated protein-78 and protein disulfide isomerase and lower levels of IRE1α and PERK compared to aerobic controls. MMP-2 inhibitors, ARP-100 or ONO-4817, given 10 min before ischemia, improved cardiac post-ischemic recovery and preserved IRE1α level in hearts subjected to 30 min ischemia/40 min reperfusion. IR also increased the levels of CHOP and mitochondrial Bax and caspase-3 and -9 activities, indicating induction of apoptosis, all of which were attenuated by MMP-2 inhibitors, regardless of the reperfusion time. Immunoprecipitation showed an association between MMP-2 and IRE1α in aerobic and IR hearts. During myocardial IR injury MMP-2 may impair the UPR and induce apoptosis by proteolysis of IRE1α. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in part by preserving IRE1α and preventing the progression to myocardial cell death.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Zhu X, Qin Z, Zhou M, Li C, Jing J, Ye W, Gan X. The Role of Mitochondrial Permeability Transition in Bone Metabolism, Bone Healing, and Bone Diseases. Biomolecules 2024; 14:1318. [PMID: 39456250 PMCID: PMC11506728 DOI: 10.3390/biom14101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone is a dynamic organ with an active metabolism and high sensitivity to mitochondrial dysfunction. The mitochondrial permeability transition pore (mPTP) is a low-selectivity channel situated in the inner mitochondrial membrane (IMM), permitting the exchange of molecules of up to 1.5 kDa in and out of the IMM. Recent studies have highlighted the critical role of the mPTP in bone tissue, but there is currently a lack of reviews concerning this topic. This review discusses the structure and function of the mPTP and its impact on bone-related cells and bone-related pathological states. The mPTP activity is reduced during the osteogenic differentiation of mesenchymal stem cells (MSCs), while its desensitisation may underlie the mechanism of enhanced resistance to apoptosis in neoplastic osteoblastic cells. mPTP over-opening triggers mitochondrial swelling, regulated cell death, and inflammatory response. In particular, mPTP over-opening is involved in dexamethasone-induced osteoblast dysfunction and bisphosphonate-induced osteoclast apoptosis. In vivo, the mPTP plays a significant role in maintaining bone homeostasis, with many bone disorders linked to its excessive opening. Genetic deletion or pharmacological inhibition of the over-opening of mPTP has shown potential in enhancing bone injury recovery and alleviating bone diseases. Here, we review the findings on the relationship of the mPTP and bone at both the cellular and disease levels, highlighting novel avenues for pharmacological approaches targeting mitochondrial function to promote bone healing and manage bone-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.)
| |
Collapse
|
3
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
4
|
Dai P, He J, Wei Y, Xu M, Zhao J, Zhou X, Tang H. High Dose of Estrogen Protects the Lungs from Ischemia-Reperfusion Injury by Downregulating the Angiotensin II Signaling Pathway. Inflammation 2024; 47:1248-1261. [PMID: 38386131 DOI: 10.1007/s10753-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jutong He
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
He Z, Yin BK, Wang K, Zhao B, Chen Y, Li ZC, Chen J. The alpha2-adrenergic receptor agonist clonidine protects against cerebral ischemia/reperfusion induced neuronal apoptosis in rats. Metab Brain Dis 2024; 39:741-752. [PMID: 38833094 DOI: 10.1007/s11011-024-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Bo-Kai Yin
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- Yichang Yiling Hospital, 443000, Yichang, People's Republic of China
- Zhongnan Hospital of Wuhan University, 430071, Wuhan, People's Republic of China
| | - Ke Wang
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China
| | - Bo Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Yue Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Zi-Cheng Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Jing Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Medicine and Health Sciences, China Three Gorges University, No.8 Daxue Road, 443002, Yichang, People's Republic of China.
| |
Collapse
|
6
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
7
|
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Ding W. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol 2023; 67:102906. [PMID: 37812880 PMCID: PMC10579540 DOI: 10.1016/j.redox.2023.102906] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Microvascular endothelial damage caused by intestinal ischemia‒reperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, 210002, Jiangsu Province, China
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, PR China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Burguete MC, Jover-Mengual T, Castelló-Ruiz M, López-Morales MA, Centeno JM, Aliena-Valero A, Alborch E, Torregrosa G, Salom JB. Cerebroprotective Effect of 17β-Estradiol Replacement Therapy in Ovariectomy-Induced Post-Menopausal Rats Subjected to Ischemic Stroke: Role of MAPK/ERK1/2 Pathway and PI3K-Independent Akt Activation. Int J Mol Sci 2023; 24:14303. [PMID: 37762606 PMCID: PMC10531725 DOI: 10.3390/ijms241814303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the overwhelming advances in the understanding of the pathogenesis of stroke, a devastating disease affecting millions of people worldwide, currently there are only a limited number of effective treatments available. Preclinical and clinical studies show that stroke is a sexually dimorphic disorder, affecting males and females differently. Strong experimental evidence indicates that estrogen may play a role in this difference and that exogenous 17β-estradiol (E2) is neuroprotective against stroke in both male and female rodents. However, the molecular mechanisms by which E2 intervenes in ischemia-induced cell death, revealing these sex differences, remain unclear. The present study was aimed to determine, in female rats, the molecular mechanisms of two well-known pro-survival signaling pathways, MAPK/ERK1/2 and PI3K/Akt, that mediate E2 neuroprotection in response to acute ischemic stroke. E2 pretreatment reduced brain damage and attenuated apoptotic cell death in ovariectomized female rats after an ischemic insult. Moreover, E2 decreased phosphorylation of ERK1/2 and prevented ischemia/reperfusion-induced dephosphorylation of both Akt and the pro-apoptotic protein, BAD. However, MAPK/ERK1/2 inhibitor PD98059, but not the PI3K inhibitor LY294002, attenuated E2 neuroprotection. Thus, these results suggested that E2 pretreatment in ovariectomized female rats modulates MAPK/ERK1/2 and activates Akt independently of PI3K to promote cerebroprotection in ischemic stroke. A better understanding of the mechanisms and the influence of E2 in the female sex paves the way for the design of future successful hormone replacement therapies.
Collapse
Affiliation(s)
- María C. Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universitat de València, 46100 Burjassot, Spain
| | - Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universitat de València, 46100 Burjassot, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Spain
| | - Mikahela A. López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - José M. Centeno
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universitat de València, 46100 Burjassot, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Enrique Alborch
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universitat de València, 46100 Burjassot, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Juan B. Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Universitat de València, 46100 Burjassot, Spain; (M.C.B.); (M.C.-R.); (M.A.L.-M.); (J.M.C.); (A.A.-V.); (E.A.); (G.T.); (J.B.S.)
- Departamento de Fisiología, Universitat de València, 46100 Burjassot, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| |
Collapse
|
9
|
Medzikovic L, Azem T, Sun W, Rejali P, Esdin L, Rahman S, Dehghanitafti A, Aryan L, Eghbali M. Sex Differences in Therapies against Myocardial Ischemia-Reperfusion Injury: From Basic Science to Clinical Perspectives. Cells 2023; 12:2077. [PMID: 37626887 PMCID: PMC10453147 DOI: 10.3390/cells12162077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Mortality from myocardial infarction (MI) has declined over recent decades, which could be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of current MI treatment. However, reoxygenation via restored blood flow induces further damage to the myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelmingly demonstrate that females experience greater functional recovery from MI and decreased severity in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared with men. Distressingly, women are also reported to benefit less from current guideline-based therapies compared with men. These seemingly contradicting outcomes between experimental and clinical studies show a need for further investigation of sex-based differences in disease pathophysiology, treatment response, and a sex-specific approach in the development of novel therapeutic methods against myocardial IRI. In this literature review, we summarize the current knowledge on sex differences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly, we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mansoureh Eghbali
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, CHS BH-550 CHS, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
10
|
Du J, Zhang X, Zhang J, Huo S, Li B, Wang Q, Song M, Shao B, Li Y. Necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl 3-induced kidney damage. Food Chem Toxicol 2023; 178:113915. [PMID: 37393014 DOI: 10.1016/j.fct.2023.113915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Aluminum (Al) is a common environmental pollutant that can induce kidney damage. However, the mechanism is not clear. In the present study, to explored the exact mechanism of AlCl3-induced nephrotoxicity, C57BL/6 N male mice and HK-2 cells were used as experimental subjects. Our results showed that Al induced reactive oxygen species (ROS) overproduction, c-Jun N-terminal kinase (JNK) signaling activation, RIPK3-dependent necroptosis, NLRP3 inflammasome activation, and kidney damage. In addition, inhibiting JNK signaling could downregulate the protein expressions of necroptosis and NLRP3 inflammasome, thereby alleviating kidney damage. Meanwhile, clearing ROS effectively inhibited JNK signaling activation, which in turn inhibited necroptosis and NLRP3 inflammasome activation, ultimately alleviating kidney damage. In conclusion, these findings suggest that necroptosis and NLPR3 inflammasome activation mediated by ROS/JNK pathway participate in AlCl3-induced kidney damage.
Collapse
Affiliation(s)
- Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Li Z, Lu S, Qian B, Meng Z, Zhou Y, Chen D, Chen B, Yang G, Ma Y. Sex differences in hepatic ischemia‒reperfusion injury: a cross-sectional study. Sci Rep 2023; 13:5724. [PMID: 37029182 PMCID: PMC10081297 DOI: 10.1038/s41598-023-32837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Several studies have shown that males suffer more severe damage than females in the process of ischemia and reperfusion of the brain, heart and kidney. Accordingly, our study will reveal the correlation between the severity of hepatic ischemia‒reperfusion injury (HIRI) and sex, and preliminarily analyze the underlying mechanism. A total of 75 patients who were considered to have "benign liver tumors" at the initial admission and underwent partial hepatectomy were enrolled. We identified potential differences between different groups and discussed the correlation between the severity of HIRI and sex through a comparative analysis. Results showed that HIRI was more severe in males than in females, especially in younger patients. To explore whether estrogen level differences are the main reason for the sex differences in HIRI, we further revealed that HIRI in premenopausal females was more severe than that in postmenopausal females. By comparing the levels of gonadal hormones, we speculated that multiple gonadal hormones, including follicle-stimulating hormone, luteinizing hormone and testosterone, may jointly participate in the regulation of sex differences in HIRI together with estrogen.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Zhanzhi Meng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Guangchao Yang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
Omoto ACM, do Carmo JM, Nelson B, Aitken N, Dai X, Moak S, Flynn E, Wang Z, Mouton AJ, Li X, Hall JE, da Silva AA. Central Nervous System Actions of Leptin Improve Cardiac Function After Ischemia–Reperfusion: Roles of Sympathetic Innervation and Sex Differences. J Am Heart Assoc 2022; 11:e027081. [DOI: 10.1161/jaha.122.027081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion.
Methods and Results
Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post‐I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (−4.2±7.9 versus −68.2±3.8 Δ%) compared with vehicle‐treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad‐lib fed or pair‐fed saline‐treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD
+
/NADH content (≈10‐fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury.
Conclusions
These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.
Collapse
Affiliation(s)
- Ana C. M. Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Benjamin Nelson
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Nikaela Aitken
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuemei Dai
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Sydney Moak
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Elizabeth Flynn
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alan J. Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - John E. Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| |
Collapse
|
14
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
15
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
16
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
17
|
Lassen TR, Hjortbak MV, Hauerslev M, Tonnesen PT, Kristiansen SB, Jensen RV, Bøtker HE. Influence of strain, age, origin, and anesthesia on the cardioprotective efficacy by local and remote ischemic conditioning in an ex vivo rat model. Physiol Rep 2021; 9:e14810. [PMID: 33818005 PMCID: PMC8020046 DOI: 10.14814/phy2.14810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Local ischemic preconditioning (IPC) and remote ischemic conditioning (RIC) induced by brief periods of ischemia and reperfusion protect against ischemia‐reperfusion injury. Methods We studied the sensitivity to IR‐injury and the influence of strain, age, supplier, and anesthesia upon the efficacy of IPC and RIC in 7‐ and 16‐weeks‐old Sprague‐Dawley and Wistar rats from three different suppliers. The influence of sedation with a hypnorm and midazolam mixture (rodent mixture) and pentobarbiturate was compared. Results IPC attenuated infarct size in both 7‐weeks‐old Sprague–Dawley (48.4 ± 17.7% vs. 20.3 ± 6.9, p < 0.001) and 7‐weeks‐old Wistar (55.6 ± 10.9% vs. 26.8 ± 5.0%, p < 0.001) rats. Infarct size was larger in 16‐weeks‐old Sprague–Dawley rats, however, IPC still lowered infarct size (78.8 ± 9.2% vs. 58.3 ± 12.3%, p < 0.01). RIC reduced infarct sizes in 7‐weeks‐old Sprague–Dawley (75.3 ± 11.8% vs. 58.6 ± 8.9%, p < 0.05), but not in 7‐weeks‐old Wistar rats (31.7 ± 17.6% and 24.0 ± 12.6%, p = 0.2). In 16‐weeks‐old Sprague–Dawley rats, RIC did not induce protection (76.4 ± 5.5% and 73.2 ± 14.7%, p = 0.6). However, RIC induced protection in 16‐weeks‐old Wistar rats (45.2 ± 8.5% vs. 14.7 ± 10.8%, p < 0.001). RIC did not reduce infarct size in 7‐weeks‐old Sprague–Dawley rats from Charles River (62.0 ± 13.5% and 69.4 ± 10.4% p = 0.3) or 16‐weeks‐old Wistar rats from Janvier (50.7 ± 11.3 and 49.2 ± 16.2, p = 0.8). There was no difference between sedation with rodent mixture or pentobarbiturate. Conclusion The cardioprotective effect of IPC is consistent across rat strains independent of age, strain, and supplier. RIC seems to be less reproducible, but still yields protection across different rat strains. However, age, animal supplier, and anesthetics may modulate the sensitivity of IR‐injury and the response to RIC.
Collapse
Affiliation(s)
- Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Marie Hauerslev
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Pernille Tilma Tonnesen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
18
|
The cyclophilin inhibitor NIM-811 increases muscle cell survival with hypoxia in vitro and improves gait performance following ischemia-reperfusion in vivo. Sci Rep 2021; 11:6152. [PMID: 33731782 PMCID: PMC7969970 DOI: 10.1038/s41598-021-85753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Acute ischemia–reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0–20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia–reperfusion injury.
Collapse
|
19
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
The Effect of Sex Differences on Endothelial Function and Circulating Endothelial Progenitor Cells in Hypertriglyceridemia. Cardiol Res Pract 2020; 2020:2132918. [PMID: 33014455 PMCID: PMC7526329 DOI: 10.1155/2020/2132918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background Men have a higher risk and earlier onset of cardiovascular diseases compared with premenopausal women. Hypertriglyceridemia is an independent risk factor for the occurrence of ischemic heart disease. Endothelial dysfunction is related to the development of ischemic heart disease. Whether sex differences will affect the circulating endothelial progenitor cells (EPCs) and endothelial function in hypertriglyceridemia patients or not is not clear. Methods Forty premenopausal women and forty age- and body mass index (BMI)-matched men without cardiovascular and metabolic disease were recruited and then divided into four groups: normotriglyceridemic women (women with serum triglycerides level <150 mg/dl), hypertriglyceridemic women (women with serum triglycerides level ≥150 mg/dl), normotriglyceridemic men (men with serum triglycerides level <150 mg/dl), and hypertriglyceridemic men (men with serum triglycerides level ≥150 mg/dl). Peripheral blood was obtained and evaluated. Flow-mediated dilatation (FMD), the number and activity of circulating EPCs, and the levels of nitric oxide (NO), vascular endothelial growth factor (VEGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma and culture medium were measured. Results The number and activity of circulating EPCs, as well as the level of NO in plasma or culture medium, were remarkably increased in premenopausal females compared with those in males both in the hypertriglyceridemic group and the normotriglyceridemic group. The EPC counts and activity, as well as the production of NO, were restored in hypertriglyceridemic premenopausal women compared with those in normal women. However, in hypertriglyceridemic men, the EPC counts and activity, as well as levels of NO, were significantly reduced. The values of VEGF and GM-CSF were without statistical change. Conclusions The present study firstly demonstrated that there were sex differences in the number and activity of circulating EPCs in hyperglyceridemia patients. Hypertriglyceridemic premenopausal women displayed restored endothelial functions, with elevated NO production, probably mediated by estradiol. We provided a new insight to explore the clinical biomarkers and therapeutic strategies for hypertriglyceridemia-related vascular damage.
Collapse
|
21
|
Shares BH, Smith CO, Sheu TJ, Sautchuk R, Schilling K, Shum LC, Paine A, Huber A, Gira E, Brown E, Awad H, Eliseev RA. Inhibition of the mitochondrial permeability transition improves bone fracture repair. Bone 2020; 137:115391. [PMID: 32360587 PMCID: PMC7354230 DOI: 10.1016/j.bone.2020.115391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Bone fracture is accompanied by trauma, mechanical stresses, and inflammation - conditions known to induce the mitochondrial permeability transition. This phenomenon occurs due to opening of the mitochondrial permeability transition pore (MPTP) promoted by cyclophilin D (CypD). MPTP opening leads to more inflammation, cell death and potentially to disruption of fracture repair. Here we performed a proof-of-concept study and tested a hypothesis that protecting mitochondria from MPTP opening via inhibition of CypD improves fracture repair. First, our in vitro experiments indicated pro-osteogenic and anti-inflammatory effects in osteoprogenitors upon CypD knock-out or pharmacological inhibition. Using a bone fracture model in mice, we observed that bone formation and biomechanical properties of repaired bones were significantly increased in CypD knock-out mice or wild type mice treated with a CypD inhibitor, NIM811, when compared to controls. These effects were evident in young male but not female mice, however in older (13 month-old) female mice bone formation was also increased during fracture repair. In contrast to global CypD knock-out, mesenchymal lineage-specific (Prx1-Cre driven) CypD deletion did not result in improved fracture repair. Our findings implicate MPTP in bone fracture and suggest systemic CypD inhibition as a modality to promote fracture repair.
Collapse
Affiliation(s)
- Brianna H Shares
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Kevin Schilling
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14624, United States of America
| | - Laura C Shum
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Ananta Paine
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Aric Huber
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Emma Gira
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14624, United States of America
| | - Hani Awad
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14624, United States of America
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, United States of America; Department of Pharmacology & Physiology, University of Rochester, Rochester, NY 14624, United States of America.
| |
Collapse
|
22
|
Cadeddu Dessalvi C, Pepe A, Penna C, Gimelli A, Madonna R, Mele D, Monte I, Novo G, Nugara C, Zito C, Moslehi JJ, de Boer RA, Lyon AR, Tocchetti CG, Mercuro G. Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens. Heart Fail Rev 2020; 24:915-925. [PMID: 31256318 DOI: 10.1007/s10741-019-09820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.
Collapse
Affiliation(s)
| | - Alessia Pepe
- Magnetic Resonance Imaging Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Gimelli
- Nuclear Medicine Unit, Fondazione G. Monasterio C.N.R.- Regione Toscana, Pisa, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Donato Mele
- Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities- Cardiology, University of Catania, Catania, Italy
| | - Giuseppina Novo
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Cinzia Nugara
- Department of Cardiology, University of Palermo, Palermo, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine - Cardiology, University of Messina, Messina, Italy
| | - Javid J Moslehi
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, Department of Cardiology, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | | | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|