1
|
Fringuello AR, Colbourn R, Goodman JH, Michelson HB, Ling DSF, Hrabetova S. Rapid volume pulsations of the extracellular space accompany epileptiform activity in trauma-injured neocortex and depend on the sodium-bicarbonate cotransporter NBCe1. Epilepsy Res 2024; 201:107337. [PMID: 38461594 DOI: 10.1016/j.eplepsyres.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.
Collapse
Affiliation(s)
- Anthony R Fringuello
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Neural and Behavioral Science Graduate Program, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert Colbourn
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Neural and Behavioral Science Graduate Program, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Present address: Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hillary B Michelson
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Douglas S F Ling
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
2
|
Pawlik M, Czarnecka AM, Kołodziej M, Skowrońska K, Węgrzynowicz M, Podgajna M, Czuczwar SJ, Albrecht J. Attenuation of initial pilocarpine-induced electrographic seizures by methionine sulfoximine pretreatment tightly correlates with the reduction of extracellular taurine in the hippocampus. Epilepsia 2023; 64:1390-1402. [PMID: 36808593 DOI: 10.1111/epi.17554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVE Initiation and development of early seizures by chemical stimuli is associated with brain cell swelling resulting in edema of seizure-vulnerable brain regions. We previously reported that pretreatment with a nonconvulsive dose of glutamine (Gln) synthetase inhibitor methionine sulfoximine (MSO) mitigates the intensity of initial pilocarpine (Pilo)-induced seizures in juvenile rats. We hypothesized that MSO exerts its protective effect by preventing the seizure-initiating and seizure-propagating increase of cell volume. Taurine (Tau) is an osmosensitive amino acid, whose release reflects increased cell volume. Therefore, we tested whether the poststimulus rise of amplitude of Pilo-induced electrographic seizures and their attenuation by MSO are correlated with the release of Tau from seizure-affected hippocampus. METHODS Lithium-pretreated animals were administered MSO (75 mg/kg ip) 2.5 h before the induction of convulsions by Pilo (40 mg/kg ip). Electroencephalographic (EEG) power was analyzed during 60 min post-Pilo, at 5-min intervals. Extracellular accumulation of Tau (eTau) served as a marker of cell swelling. eTau, extracellular Gln (eGln), and extracellular glutamate (eGlu) were assayed in the microdialysates of the ventral hippocampal CA1 region collected at 15-min intervals during the whole 3.5-h observation period. RESULTS The first EEG signal became apparent at ~10 min post-Pilo. The EEG amplitude across most frequency bands peaked at ~40 min post-Pilo, and showed strong (r ~ .72-.96) temporal correlation with eTau, but no correlation with eGln or eGlu. MSO pretreatment delayed the first EEG signal in Pilo-treated rats by ~10 min, and depressed the EEG amplitude across most frequency bands, to values that remained strongly correlated with eTau (r > .92) and moderately correlated (r ~ -.59) with eGln, but not with eGlu. SIGNIFICANCE Strong correlation between attenuation of Pilo-induced seizures and Tau release indicates that the beneficial effect of MSO is due to the prevention of cell volume increase concurrent with the onset of seizures.
Collapse
Affiliation(s)
- Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maria Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Kołodziej
- Institute of Theory of Electrical Engineering, Measurement, and Information Systems, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Węgrzynowicz
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Podgajna
- Laboratory of Molecular Basis of Neurodegeneration, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Multiscale co-simulation of deep brain stimulation with brain networks in neurodegenerative disorders. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int J Mol Sci 2022; 23:ijms232012401. [PMID: 36293258 PMCID: PMC9604357 DOI: 10.3390/ijms232012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.
Collapse
|
5
|
Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva J, Bartolomei F, Jirsa V, Guye M. Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Hum Brain Mapp 2022; 44:825-840. [PMID: 36217746 PMCID: PMC9842896 DOI: 10.1002/hbm.26102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, CEMEREMMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Mohamed M. El Mendili
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jean‐Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| |
Collapse
|
6
|
Paviolo C, Ferreira JS, Lee A, Hunter D, Calaresu I, Nandi S, Groc L, Cognet L. Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses. NANO LETTERS 2022; 22:6849-6856. [PMID: 36038137 PMCID: PMC9479209 DOI: 10.1021/acs.nanolett.1c04259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We provide evidence of a local synaptic nanoenvironment in the brain extracellular space (ECS) lying within 500 nm of postsynaptic densities. To reveal this brain compartment, we developed a correlative imaging approach dedicated to thick brain tissue based on single-particle tracking of individual fluorescent single wall carbon nanotubes (SWCNTs) in living samples and on speckle-based HiLo microscopy of synaptic labels. We show that the extracellular space around synapses bears specific properties in terms of morphology at the nanoscale and inner diffusivity. We finally show that the ECS juxta-synaptic region changes its diffusion parameters in response to neuronal activity, indicating that this nanoenvironment might play a role in the regulation of brain activity.
Collapse
Affiliation(s)
- Chiara Paviolo
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Joana S. Ferreira
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Antony Lee
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Daniel Hunter
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Ivo Calaresu
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Somen Nandi
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Laurent Groc
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Cognet
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| |
Collapse
|
7
|
Preventive effects of a standardized flavonoid extract of safflower in rotenone-induced Parkinson's disease rat model. Neuropharmacology 2022; 217:109209. [DOI: 10.1016/j.neuropharm.2022.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
|
8
|
Thulborn KR. Gender differences in cell volume fraction (CVF): a structural parameter reflecting the energy efficiency of maintaining the resting membrane potential. NMR IN BIOMEDICINE 2022; 35:e4693. [PMID: 35044017 DOI: 10.1002/nbm.4693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The cell volume fraction (CVF) of the human brain is high (~82%) and is preserved across healthy aging while the brain declines in volume. These two observations, supported by several independent techniques, suggest that CVF is an important structural parameter. A new biophysical model is presented that incorporates CVF into the Goldman equation of classical membrane electrophysiology. The Goldman equation contains few structural constraints beyond two compartments separated by a semipermeable membrane supporting ion gradients. As potassium is the most permeable ion in the resting state, the resting membrane potential is determined by the potassium ion gradient. This biophysical model indicates that the sodium-potassium ion pumps use less energy at high CVF to maintain the resting membrane potential, explaining the high value of CVF and its conservation with healthy aging. CVF is measured to be statistically significantly higher in the brains of males compared with females, suggesting a structural requirement for higher energy efficiency in the larger male brain to support the greater number of neurons and synapses. As CVF can be measured in humans using quantitative sodium MRI and has potential implications for brain health, CVF may be a quantitative parameter that is useful for assessment of brain health, especially in patients with diseases such as dementia and psychiatric disease that do not have anatomical correlates detectable by clinical proton MRI.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
9
|
McKenna M, Filteau JR, Butler B, Sluis K, Chungyoun M, Schimek N, Nance E. Organotypic whole hemisphere brain slice models to study the effects of donor age and oxygen-glucose-deprivation on the extracellular properties of cortical and striatal tissue. J Biol Eng 2022; 16:14. [PMID: 35698088 PMCID: PMC9195469 DOI: 10.1186/s13036-022-00293-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. RESULTS Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. CONCLUSIONS We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Jeremy R Filteau
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Brendan Butler
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Kenneth Sluis
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Michael Chungyoun
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA
| | - Nels Schimek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, WA, 98195-1750, USA. .,e-Science Institute, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Thevalingam D, Naik AA, Hrabe J, McCloskey DP, Hrabĕtová S. Brain extracellular space of the naked mole-rat expands and maintains normal diffusion under ischemic conditions. Brain Res 2021; 1771:147646. [PMID: 34499876 DOI: 10.1016/j.brainres.2021.147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Brain extracellular space (ECS) forms a conduit for diffusion, an essential mode of molecular transport between brain vasculature, neurons and glia. ECS volume is reduced under conditions of hypoxia and ischemia, contributing to impaired extracellular diffusion and consequent neuronal dysfunction and death. We investigated the ECS volume fraction and diffusion permeability of the African naked mole-rat (NM-R; Heterocephalus Glaber), a rodent with a remarkably high tolerance for hypoxia and ischemia. Real-Time Iontophoretic and Integrative Optical Imaging methods were used to evaluate diffusion transport in cortical slices under normoxic and ischemic conditions, and results were compared to values previously collected in rats. NM-R brains under normoxic conditions had a smaller ECS volume fraction than rats, and a correspondingly decreased diffusion permeability for macromolecules. Surprisingly, and in sharp contrast to rats, the NM-R ECS responded to ischemic conditions at the center of thick brain slices by expanding, rather than shrinking, and preserving diffusion permeabilities for small and large molecules. The NM-R thick slices also showed a blunted accumulation of ECS potassium compared to rats. The remarkable dynamic response of the NM-R ECS to ischemia likely demonstrates an adaptation for NM-R to maintain brain function in their extreme nest environment.
Collapse
Affiliation(s)
- Donald Thevalingam
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA
| | - Aditi A Naik
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Neural and Behavioral Science Graduate Program, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jan Hrabe
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Dan P McCloskey
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA; Department of Psychology, College of Staten Island in The City University of New York, Staten Island, NY, USA.
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
11
|
Anticonvulsive Effects of Chondroitin Sulfate on Pilocarpine and Pentylenetetrazole Induced Epileptogenesis in Mice. Molecules 2021; 26:molecules26226773. [PMID: 34833865 PMCID: PMC8622985 DOI: 10.3390/molecules26226773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chondroitin sulfate is a proteoglycan component of the extracellular matrix (ECM) that supports neuronal and non-neuronal cell activity, provides a negative domain to the extracellular matrix, regulates the intracellular positive ion concentration, and maintains the hypersynchronous epileptiform activity. Therefore, the present study hypothesized an antiepileptic potential of chondroitin sulfate (CS) in pentylenetetrazole-induced kindled epilepsy and pilocarpine-induced status epilepticus in mice. Levels of various oxidative stress markers and inflammatory mediators were estimated in the brain tissue homogenate of mice, and histopathological changes were evaluated. Treatment with valproate (110 mg/kg; i.p.) as a standard drug and chondroitin sulfate (100 & 200 mg/kg, p.o.) significantly (p < 0.01) and dose-dependently prevented the severity of kindled and spontaneous recurrent seizures in mice. Additionally, chondroitin sulfate showed its antioxidant potential by restoring the various biochemical levels and anti-inflammatory properties by reducing NF-kB levels and pro-inflammatory mediators like TNF-alpha, IL-1β, and IL-6, indicating the neuroprotective effect as well as the suppressed levels of caspase-3, which indicated a neuroprotective treatment strategy in epilepsy. The proteoglycan chondroitin sulfate restores the normal physiology and configuration of the neuronal tissue. Further, the molecular docking of chondroitin sulfate at the active pockets of TNF-alpha, IL-1β, and IL-6 showed excellent interactions with critical amino acid residues. In conclusion, the present work provides preclinical evidence of chondroitin sulfate as a new therapeutic approach in attenuating and preventing seizures with a better understanding of the mechanism of alteration in ECM changes influencing abnormal neuronal activities.
Collapse
|
12
|
Gao Y, Han H, Du J, He Q, Jia Y, Yan J, Dai H, Cui B, Yang J, Wei X, Yang L, Wang R, Long R, Ren Q, Yang X, Lu J. Early changes to the extracellular space in the hippocampus under simulated microgravity conditions. SCIENCE CHINA-LIFE SCIENCES 2021; 65:604-617. [PMID: 34185240 DOI: 10.1007/s11427-021-1932-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The smooth transportation of substances through the brain extracellular space (ECS) is crucial to maintaining brain function; however, the way this occurs under simulated microgravity remains unclear. In this study, tracer-based magnetic resonance imaging (MRI) and DECS-mapping techniques were used to image the drainage of brain interstitial fluid (ISF) from the ECS of the hippocampus in a tail-suspended hindlimb-unloading rat model at day 3 (HU-3) and 7 (HU-7). The results indicated that drainage of the ISF was accelerated in the HU-3 group but slowed markedly in the HU-7 group. The tortuosity of the ECS decreased in the HU-3 group but increased in the HU-7 group, while the volume fraction of the ECS increased in both groups. The diffusion rate within the ECS increased in the HU-3 group and decreased in the HU-7 group. The alterations to ISF drainage and diffusion in the ECS were recoverable in the HU-3 group, but neither parameter was restored in the HU-7 group. Our findings suggest that early changes to the hippocampal ECS and ISF drainage under simulated microgravity can be detected by tracer-based MRI, providing a new perspective for studying microgravity-induced nano-scale structure abnormities and developing neuroprotective approaches involving the brain ECS.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
| | - Jichen Du
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.,Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hui Dai
- NHC Key Laboratory of Medical Immunology, Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100039, China
| | - Xunbin Wei
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Ren Long
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Qiushi Ren
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Xing Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| |
Collapse
|
13
|
Colbourn R, Hrabe J, Nicholson C, Perkins M, Goodman JH, Hrabetova S. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter. J Physiol 2021; 599:3195-3220. [PMID: 33942325 DOI: 10.1113/jp281544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Extracellular space (ECS) rapid volume pulsation (RVP) accompanying epileptiform activity is described for the first time. Such RVP occurs robustly in several in vitro and in vivo mouse models of epileptiform activity. In the in vitro 4-aminopyridine model of epileptiform activity, RVP depends on the activity of the electrogenic Na+ /HCO3 - cotransporter (NBCe1). NBCe1 pharmacological inhibition suppresses RVP and epileptiform activity. Inhibition of changes in ECS volume may be a useful target in epilepsy patients who are resistant to current treatments. ABSTRACT: The extracellular space (ECS) of the brain shrinks persistently by approximately 35% during epileptic seizures. Here we report the discovery of rapid volume pulsation (RVP), further transient drops in ECS volume which accompany events of epileptiform activity. These transient ECS contractions were observed in multiple mouse models of epileptiform activity both in vivo (bicuculline methiodide model) and in vitro (hyaluronan synthase 3 knock-out, picrotoxin, bicuculline and 4-aminopyridine models). By using the probe transients quantification (PTQ) method we show that individual pulses of RVP shrank the ECS by almost 15% in vivo. In the 4-aminopyridine in vitro model, the individual pulses of RVP shrank the ECS by more than 4%, and these transient changes were superimposed on a persistent ECS shrinkage of 36% measured with the real-time iontophoretic method. In this in vitro model, we investigated several channels and transporters that may be required for the generation of RVP and epileptiform activity. Pharmacological blockages of Na+ /K+ /2Cl- cotransporter type 1 (NKCC1), K+ /Cl- cotransporter (KCC2), the water channel aquaporin-4 (AQP4) and inwardly rectifying potassium channel 4.1 (Kir4.1) were ineffective in halting the RVP and the epileptiform activity. In contrast, pharmacological blockade of the electrogenic Na+ /HCO3 - cotransporter (NBCe1) by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminated both the RVP and the persistent ECS shrinkage. Importantly, this blocker also stopped the epileptiform activity. These results demonstrate that RVP is closely associated with epileptiform activity across several models of epileptiform activity and therefore the underlying mechanism could potentially represent a novel target for epilepsy management and treatment.
Collapse
Affiliation(s)
- Robert Colbourn
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Neural and Behavioral Science Graduate Program, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jan Hrabe
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Charles Nicholson
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Matthew Perkins
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.,Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
14
|
Alcoreza OB, Patel DC, Tewari BP, Sontheimer H. Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic Perspective. Front Neurol 2021; 12:652159. [PMID: 33828523 PMCID: PMC8019783 DOI: 10.3389/fneur.2021.652159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System x c - , a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
Collapse
Affiliation(s)
- Oscar B Alcoreza
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,School of Medicine, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Dipan C Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Bhanu P Tewari
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
15
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
16
|
Li Y, Han H, Shi K, Cui D, Yang J, Alberts IL, Yuan L, Zhao G, Wang R, Cai X, Teng Z. The Mechanism of Downregulated Interstitial Fluid Drainage Following Neuronal Excitation. Aging Dis 2020; 11:1407-1422. [PMID: 33269097 PMCID: PMC7673848 DOI: 10.14336/ad.2020.0224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (DECS) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation. We further studied aquaporin-4 gene (APQ4) knockout rats in which the changes of the brain ECS structure were reversed and found that the slowed DECS and ISF drainage persisted, confirming that the down-regulation of ISF drainage following neuronal excitation was mainly attributable to the release of neurotransmitters rather than to structural changes of the brain ECS. Meanwhile, the dynamic changes in the DECS were synchronized with the release and elimination processes of neurotransmitters following neuronal excitation. In conclusion, the downregulation of ISF drainage following neuronal excitation was found to be caused by the restricted diffusion in the brain ECS, and DECS mapping may be used to track the neuronal activity in the deep brain.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
- Department of Informatics, Technical University of Munich, Garching 85748, Germany.
| | - Dehua Cui
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Ian Leigh Alberts
- Department of Nuclear Medicine, University of Bern, 3010 Bern, Switzerland.
| | - Lan Yuan
- Peking University Medical and Health Analysis Center, Peking University Health Science Center, Beijing, China.
| | - Guomei Zhao
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Xianjie Cai
- Department of Radiology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Soria FN, Miguelez C, Peñagarikano O, Tønnesen J. Current Techniques for Investigating the Brain Extracellular Space. Front Neurosci 2020; 14:570750. [PMID: 33177979 PMCID: PMC7591815 DOI: 10.3389/fnins.2020.570750] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The brain extracellular space (ECS) is a continuous reticular compartment that lies between the cells of the brain. It is vast in extent relative to its resident cells, yet, at the same time the nano- to micrometer dimensions of its channels and reservoirs are commonly finer than the smallest cellular structures. Our conventional view of this compartment as largely static and of secondary importance for brain function is rapidly changing, and its active dynamic roles in signaling and metabolite clearance have come to the fore. It is further emerging that ECS microarchitecture is highly heterogeneous and dynamic and that ECS geometry and diffusional properties directly modulate local diffusional transport, down to the nanoscale around individual synapses. The ECS can therefore be considered an extremely complex and diverse compartment, where numerous physiological events are unfolding in parallel on spatial and temporal scales that span orders of magnitude, from milliseconds to hours, and from nanometers to centimeters. To further understand the physiological roles of the ECS and identify new ones, researchers can choose from a wide array of experimental techniques, which differ greatly in their applicability to a given sample and the type of data they produce. Here, we aim to provide a basic introduction to the available experimental techniques that have been applied to address the brain ECS, highlighting their main characteristics. We include current gold-standard techniques, as well as emerging cutting-edge modalities based on recent super-resolution microscopy. It is clear that each technique comes with unique strengths and limitations and that no single experimental method can unravel the unknown physiological roles of the brain ECS on its own.
Collapse
Affiliation(s)
- Federico N. Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|