1
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
3
|
Zheng G, Ren J, Shang L, Bao Y. Sonic Hedgehog Signaling Pathway: A Role in Pain Processing. Neurochem Res 2023; 48:1611-1630. [PMID: 36738366 DOI: 10.1007/s11064-023-03864-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Pain, as one of the most prevalent clinical symptoms, is a complex physiological and psychological activity. Long-term severe pain can become unbearable to the body. However, existing treatments do not provide satisfactory results. Therefore, new mechanisms and therapeutic targets need to be urgently explored for pain management. The Sonic hedgehog (Shh) signaling pathway is crucial in embryonic development, cell differentiation and proliferation, and nervous system regulation. Here, we review the recent studies on the Shh signaling pathway and its action in multiple pain-related diseases. The Shh signaling pathway is dysregulated under various pain conditions, such as pancreatic cancer pain, bone cancer pain, chronic post-thoracotomy pain, pain caused by degenerative lumbar disc disease, and toothache. Further studies on the Shh signaling pathway may provide new therapeutic options for pain patients.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Pathophysiology of Post-Traumatic Trigeminal Neuropathic Pain. Biomolecules 2022; 12:biom12121753. [PMID: 36551181 PMCID: PMC9775491 DOI: 10.3390/biom12121753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trigeminal nerve injury is one of the causes of chronic orofacial pain. Patients suffering from this condition have a significantly reduced quality of life. The currently available management modalities are associated with limited success. This article reviews some of the common causes and clinical features associated with post-traumatic trigeminal neuropathic pain (PTNP). A cascade of events in the peripheral and central nervous system function is involved in the pathophysiology of pain following nerve injuries. Central and peripheral processes occur in tandem and may often be co-dependent. Due to the complexity of central mechanisms, only peripheral events contributing to the pathophysiology have been reviewed in this article. Future investigations will hopefully help gain insight into trigeminal-specific events in the pathophysiology of the development and maintenance of neuropathic pain secondary to nerve injury and enable the development of new therapeutic modalities.
Collapse
|
5
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway. Cancer Cell Int 2022; 22:282. [PMID: 36100906 PMCID: PMC9469619 DOI: 10.1186/s12935-022-02702-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling cascade is one of the complex signaling pathways that control the accurately organized developmental processes in multicellular organisms. This pathway has fundamental roles in the tumor formation and induction of resistance to conventional therapies. Numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. Many of the Shh-interacting ncRNAs are oncogenes whose expressions have been increased in diverse malignancies. A number of Shh-targeting miRNAs such as miR-26a, miR-1471, miR-129-5p, miR-361-3p, miR-26b-5p and miR-361-3p have been found to be down-regulated in tumor tissues. In addition to malignant conditions, Shh-interacting ncRNAs can affect tissue regeneration and development of neurodegenerative disorders. XIST, LOC101930370, lncRNA-Hh, circBCBM1, SNHG6, LINC‐PINT, TUG1 and LINC01426 are among long non-coding RNAs/circular RNAs that interact with Shh pathway. Moreover, miR-424, miR-26a, miR-1471, miR-125a, miR-210, miR-130a-5p, miR-199b, miR-155, let-7, miR-30c, miR-326, miR-26b-5p, miR-9, miR-132, miR-146a and miR-425-5p are among Shh-interacting miRNAs. The current review summarizes the interactions between ncRNAs and Shh in these contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region,, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
HajiEsmailPoor Z, Tabnak P, Ahmadzadeh B, Ebrahimi SS, Faal B, Mashatan N. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomed Pharmacother 2022; 153:113507. [DOI: 10.1016/j.biopha.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
7
|
Huang B, Guo S, Zhang Y, Lin P, Lin C, Chen M, Zhu S, Huang L, He J, Zhang L, Zheng Y, Wen Z. MiR-223-3p alleviates trigeminal neuropathic pain in the male mouse by targeting MKNK2 and MAPK/ERK signaling. Brain Behav 2022; 12:e2634. [PMID: 35608154 PMCID: PMC9304854 DOI: 10.1002/brb3.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia (TN) is a neuropathic pain that occurs in branches of the trigeminal nerve. MicroRNAs (miRNAs) have been considered key mediators of neuropathic pain. This study was aimed to elucidate the pathophysiological function and mechanisms of miR-223-3p in mouse models of TN. METHODS Infraorbital nerve chronic constriction injury (CCI-ION) was applied in male C57BL/6J mice to establish mouse models of TN. Pain responses were assessed utilizing Von Frey method. The expression of miR-223-3p, MKNK2, and MAPK/ERK pathway protein in trigeminal ganglions (TGs) of CCI-ION mice was measured using RT-qPCR and Western blotting. The concentrations of inflammatory cytokines were evaluated using Western blotting. The relationship between miR-223-3p and MKNK2 was tested by a luciferase reporter assay. RESULTS We found that miR-223-3p was downregulated, while MKNK2 was upregulated in TGs of CCI-ION mice. MiR-223-3p overexpression by an intracerebroventricular injection of Lv-miR-223-3p attenuated trigeminal neuropathic pain in CCI-ION mice, as well as reduced the protein levels of pro-inflammatory cytokines in TGs of CCI-ION mice. MKNK2 was verified to be targeted by miR-223-3p. Additionally, miR-223-3p overexpression decreased the phosphorylation levels of ERK1/2, JNK, and p38 protein in TGs of CCI-ION mice to inhibit MAPK/ERK signaling. CONCLUSIONS Overall, miR-223-3p attenuates the development of TN by targeting MKNK2 to suppress MAPK/ERK signaling.
Collapse
Affiliation(s)
- Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, Putian, China
| | - Yipan Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Pengxing Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Changgui Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Meixia Chen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shengyin Zhu
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Liyu Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Junwei He
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Lingfeng Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Yanping Zheng
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Zhipeng Wen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
8
|
UVB irradiation differential regulate miRNAs expression in skin photoaging. An Bras Dermatol 2022; 97:458-466. [PMID: 35660030 PMCID: PMC9263642 DOI: 10.1016/j.abd.2022.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background UVB irradiation can cause acute damage such as sunburn, or photoaging and melanoma, all of which are major health threats. Objective This study was designed to investigate the mechanism of skin photoaging induced by UVB radiation in mice through the analysis of the differential expression of miRNAs. Methods A UVB irradiation photoaging model was constructed. HE and Masson special stains were used to examine the modifications in the epidermis and dermis of mice. The miRNA expression profiles of the mouse skin model exposed to UVB radiation and the normal skin of mice were analyzed using miRNA-sequence analysis. GO and Pathway analysis were employed for the prediction of miRNA targets. Results A total of 23 miRNAs were evaluated for significantly different expressions in comparison to normal skin. Among them, 7 miRNAs were up-regulated and 16 were down-regulated in the skin with photoaging of mice exposed to UVB irradiation. The differential expression of miRNA is related to a variety of signal transduction pathways, among which mmu-miR-195a-5p and mitogen-activated protein kinase (MAPK) signal pathways are crucial. There was a significant differential expression of miRNA in the skin of normal mice in comparison with the skin with photoaging induced by UVB irradiation. Study limitations Due to time and energy constraints, the specific protein level verification, MAPK pathway exploration, and miR-195a-5p downstream molecular mechanism need to be further studied in the future. Conclusions UVB-induced skin photoaging can be diagnosed and treated using miRNA.
Collapse
|
9
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
10
|
Li H, Du W, Yuan Y, Xue J, Li Q, Wang L. The Protective Effect of Picroside II on Isoflurane-Induced Neuronal Injury in Rats via Downregulating miR-195. Neuroimmunomodulation 2022; 29:202-210. [PMID: 34883483 DOI: 10.1159/000519779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Numerous pieces of evidence demonstrated that isoflurane induces hippocampal cell injury and cognitive impairments. Picroside II has been investigated for its anti-apoptosis and antioxidant neuroprotective effects. We aimed to explore the protective effects of picroside II and the role of microRNA-195 (miR-195) on isoflurane-induced neuronal injury in rats. METHODS The Morris water maze test was used to evaluate the effects of isoflurane on rats regarding escape latency and time in quadrant parameters. Real-time quantitative PCR was used to detect the expression levels of miR-195 and pro-inflammatory cytokines, including inter-leukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) mRNA, in the hippocampal tissues and neuronal cells. RESULTS The picroside II significantly improves isoflurane-induced higher escape latency and lower time spent in the quadrant compared with the control rats. Picroside II also promotes cell viability and suppresses cell apoptosis of isoflurane-induced neuronal cells. Besides, picroside II suppresses the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and miR-195 in vivo and in vitro. Furthermore, overexpression of miR-195 abrogates the effects of picroside II on the expression of pro-inflammatory cytokines. The appropriate dose of picroside II is 20 mg/kg. CONCLUSION Picroside II could protect the nervous system possibly through inhibiting the inflammatory response in the isoflurane-induced neuronal injury of rats. The protective effect of picroside II may be achieved by downregulating the expression of miR-195 and then inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijia Du
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yawei Yuan
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China,
| | - Jingjing Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Yang L, Xu X, Chen Z, Zhang Y, Chen H, Wang X. miR-511-3p promotes hepatic sinusoidal obstruction syndrome by activating hedgehog pathway via targeting Ptch1. Am J Physiol Gastrointest Liver Physiol 2021; 321:G344-G354. [PMID: 34287088 DOI: 10.1152/ajpgi.00081.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a major complication of hematopoietic stem cell transplantation, the incidence of hepatic sinusoidal obstruction syndrome (HSOS) is as high as 70%. Previous evidence has demonstrated that miR-511-3p was involved in HSOS, but the mechanism remains unclear. This study aims to examine the mechanism underlying miR-511-3p regulating HSOS. Monocrotaline (MCT) was used to create an HSOS rat model and to treat liver sinusoidal endothelial cells (LSECs). Hematoxylin & eosin (H&E) and Masson staining were used to detect pathological changes in liver tissue. The expression of miR-511-3p and Hedgehog pathway-related proteins was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of miR-511-3p in regulating HSOS was investigated by 3-(4,5)-dimethylthiahiazo-2)-3,5-diphenytetrazoliumromide (MTT), enzyme-linked immunosorbent assay (ELISA) assay, and flow cytometry. Finally, the interaction between miR-511-3p and patched1 (Ptch1) was determined by luciferase reporter assay. The rats showed a typical HSOS phenotype, including LSEC damage, liver injury, and fibrosis after MCT administration. miR-511-3p was upregulated in hepatic tissue of rat HSOS model and MCT-induced LSECs. miR-511-3p directly targeted Ptch1 and suppressed Ptch1 expression to activate the Hedgehog signaling pathway. Depletion of miR-511-3p showed a protective effect against MCT-induced HSOS, as evidenced by decreased HSOS pathogenesis factors, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), tumor necrosis factor-α (TNF-α), and interleukin 1 β (IL-1β), and decreased LSEC apoptosis rates. Nevertheless, knockdown of Ptch1 reversed the protective effect of miR-511-3p depletion against MCT-induced LSEC injury and apoptosis. miR-511-3p aggravates HSOS by activating the Hedgehog signaling pathway through targeting Ptch1, and miR-511-3p may develop as the potential therapy for the treatment of HSOS.NEW & NOTEWORTHY miR-511-3p is upregulated in HSOS in vivo and in vitro models. miR-511-3p activates the Hedgehog pathway by directly targeting Ptch1. Knockdown of miR-511-3p shows a protective effect against LSEC injury and apoptosis via Hedgehog signaling pathway. Inhibition of Ptch1 reserves the effect of miR-511-3p knockdown on LSEC damage and apoptosis.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Zhiyuan Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Yu Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Hui Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Xiangyang Wang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
12
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
13
|
Abstract
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. Currently, few studies provide information about the prevalence of familial TN; the available evidence indicates that about 1–2% of TN cases have the familial form. The available human studies propose the following genes to be possible contributors to development of TN: CACNA1A, CACNA1H, CACNA1F, KCNK1, TRAK1, SCN9A, SCN8A, SCN3A, SCN10A, SCN5A, NTRK1, GABRG1, MPZ gene, MAOA gene and SLC6A4. Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
Collapse
Affiliation(s)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Wan L, Su Z, Li F, Gao P, Zhang X. MiR-122-5p suppresses neuropathic pain development by targeting PDK4. Neurochem Res 2021; 46:957-963. [PMID: 33566299 DOI: 10.1007/s11064-020-03213-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The complex pathogenesis and limited efficacy of available treatment make neuropathic pain difficult for long periods of time. Several findings suggested the regulatory role of microRNA in the development of neuropathic pain. This study aims to investigate the functional role of miR-122-5p in the development of neuropathic pain. Down-regulation of miR-122-5p was observed in spinal cords of rats with neuropathic pain. We also found that overexpressing miR-122-5p by intrathecal injection of miR-122-5p lentivirus in a mouse model of chronic sciatic nerve injury (CCI) prevented neuropathic pain behavior. In HEK-293 T cells, luciferase activity was significantly decreased in the transfection group with mimic-miR-122-5p in wild-type PDK4 reporter, compared with mutant PDK4 reporter. Increased PDK4 expression was also observed during the progression of neuropathic pain. Intrathecal injection of both mimic-miR-122-5p and shPDK4 in CCI mice downregulated PDK4 expression to a lower level when compared with injected with shPDK4. In CCI mice, transfection of shPDK4 suppressed mechanical allodynia and thermal hyperalgesia, while co-transfection of shPDK4 and LV-miR-122-5p resulted in stronger levels of mechanical allodynia and thermal hyperalgesia inhibition. Taken together, the data suggest that miR-122-5p inhibits PDK4 expression, attenuating neuropathic pain. This result suggests the potential role of miR-122-5p acting as a target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngological, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Zhen Su
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Fayin Li
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an Jiangsu, China.
| |
Collapse
|
15
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
16
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|