1
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
2
|
Liu D, Zhu Y. Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion. Cells 2024; 13:1969. [PMID: 39682718 DOI: 10.3390/cells13231969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen-Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2's potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target.
Collapse
Affiliation(s)
- Daohang Liu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China
| | - Yizhun Zhu
- School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
3
|
Wang R, Hou L, Lu H, Zhang Y, Guo T, Zhou B, Zhao H, Xing M. Unveiling the interplay of MAPK/NF-κB/MLKL axis in brain health: Omega-3 as a promising candidates against copper neurotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122791. [PMID: 39357438 DOI: 10.1016/j.jenvman.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Excessive intake of copper (Cu) may lead to increased inflammatory responses in brain, which can cause damage to neurons and glial cells, thereby affecting normal brain function. Omega-3 (ω-3) is a common dietary supplement, particularly rich in DHA in the brain, known for its anti-inflammatory properties and its role in lipid balance regulation and structural maintenance. Here, ω-3 is supplemented to Cu-exposed chickens to assess its neuroprotection in vivo and in vitro. Pathologically, ω-3 significantly alleviated structural and functional abnormalities in brain under excess Cu, including barrier disruption, neuronal shrinkage necroptosis and increased release of inflammatory factors such as IL-1β. The molecular docking analyses unveiled high enrichment values of inflammation and MAPK pathway, with IL-1β gene enrichment the highest value. Mechanistically, DHA stabilized the active site of IL-1β, thereby reducing the activation of NF-κB signal and phosphorylation of MAPK/MLKL cascades, ultimately mitigating Cu-induced inflammatory effects. These mechanisms elucidate the action mode of Cu neurotoxicity from aspect of MAPK/NF-κB/MLKL axis and the promising neuroprotection of ω-3.
Collapse
Affiliation(s)
- Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Boran Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
4
|
Mullins VA, Snider JM, Michael B, Porter LR, Brinton RD, Chilton FH. Impact of fish oil supplementation on plasma levels of highly unsaturated fatty acid-containing lipid classes and molecular species in American football athletes. Nutr Metab (Lond) 2024; 21:43. [PMID: 38978004 PMCID: PMC11232345 DOI: 10.1186/s12986-024-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results. METHODS We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis. RESULTS FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21. CONCLUSIONS This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts. TRIAL REGISTRATION All deidentified data are available at ClinicalTrials.gov #NCT0479207.
Collapse
Affiliation(s)
- Veronica Anne Mullins
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Bryce Michael
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Lydia Rose Porter
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, The University of Arizona Health Sciences, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ, 85719, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness, Bioscience Research Laboratory (BSRL), University of Arizona, Room 370, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
- Center for Precision Nutrition and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ, 85719, USA.
| |
Collapse
|
5
|
Dong S, Chen C, Di C, Wang S, Dong Q, Lin W, Liu D. The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer. Curr Cancer Drug Targets 2024; 24:1195-1212. [PMID: 38362697 DOI: 10.2174/0115680096277328240110062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chang Di
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| |
Collapse
|
6
|
Soltani A, Chugaeva UY, Ramadan MF, Saleh EAM, Al-Hasnawi SS, Romero-Parra RM, Alsaalamy A, Mustafa YF, Zamanian MY, Golmohammadi M. A narrative review of the effects of dexamethasone on traumatic brain injury in clinical and animal studies: focusing on inflammation. Inflammopharmacology 2023; 31:2955-2971. [PMID: 37843641 DOI: 10.1007/s10787-023-01361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Collapse
Affiliation(s)
- Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | | | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Tomczyk M, Heileson JL, Babiarz M, Calder PC. Athletes Can Benefit from Increased Intake of EPA and DHA-Evaluating the Evidence. Nutrients 2023; 15:4925. [PMID: 38068783 PMCID: PMC10708277 DOI: 10.3390/nu15234925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fatty fish, which include mackerel, herring, salmon and sardines, and certain species of algae (e.g., Schizochytrium sp., Crytthecodiniumcohnii and Phaeodactylumtricornutum) are the only naturally rich sources of the omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are the most biologically active members of the n-3 PUFA family. Limited dietary sources and fluctuating content of EPA and DHA in fish raise concerns about the status of EPA and DHA among athletes, as confirmed in a number of studies. The beneficial effects of EPA and DHA include controlling inflammation, supporting nervous system function, maintaining muscle mass after injury and improving training adaptation. Due to their inadequate intake and beneficial health-promoting effects, athletes might wish to consider using supplements that provide EPA and DHA. Here, we provide an overview of the effects of EPA and DHA that are relevant to athletes and discuss the pros and cons of supplements as a source of EPA and DHA for athletes.
Collapse
Affiliation(s)
- Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Jeffery L. Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
- Nutrition Services Department, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Mirosław Babiarz
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
8
|
Wu Y, Zhang J, Feng X, Jiao W. Omega-3 polyunsaturated fatty acids alleviate early brain injury after traumatic brain injury by inhibiting neuroinflammation and necroptosis. Transl Neurosci 2023; 14:20220277. [PMID: 36895263 PMCID: PMC9990778 DOI: 10.1515/tnsci-2022-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Presently, traumatic brain injury (TBI) is a leading contributor to disability and mortality that places a considerable financial burden on countries all over the world. Docosahexaenoic acid and eicosapentaenoic acid are two kinds of omega-3 polyunsaturated fatty acids (ω-3 PUFA), both of which have been shown to have beneficial biologically active anti-inflammatory and antioxidant effects. However, the neuroprotective effect of ω-3 PUFA in TBI has not been proven, and its probable mechanism remains obscure. We suppose that ω-3 PUFA can alleviate early brain injury (EBI) via regulating necroptosis and neuroinflammation after TBI. This research intended to examine the neuroprotective effect of ω-3 and its possible molecular pathways in a C57BL/6 mice model of EBI caused by TBI. Cognitive function was assessed by measuring the neuronal necroptosis, neuroinflammatory cytokine levels, brain water content, and neurological score. The findings demonstrate that administration of ω-3 remarkably elevated neurological scores, alleviated cerebral edema, and reduced inflammatory cytokine levels of NF-κB, interleukin-1β (IL-1β), IL-6, and TNF-α, illustrating that ω-3 PUFA attenuated neuroinflammation, necroptosis, and neuronal cell death following TBI. The PPARγ/NF-κB signaling pathway is partially responsible for the neuroprotective activity of ω-3. Collectively, our findings illustrate that ω-3 can alleviate EBI after TBI against neuroinflammation and necroptosis.
Collapse
Affiliation(s)
- Yali Wu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Jing Zhang
- Department of Neurosurgery, The Fourth People's Hospital of Taizhou, Taizhou, 225300, China
| | - Xiaoyan Feng
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, 214044, China
| | - Wei Jiao
- Department of Nursing, 904th Hospital of Joint Logistic Support Force of PLA, 101 Xing Yuan North Road, Wuxi, 214044, China
| |
Collapse
|
9
|
Rawat V, Eastman CL, Amaradhi R, Banik A, Fender JS, Dingledine RJ, D’Ambrosio R, Ganesh T. Temporal Expression of Neuroinflammatory and Oxidative Stress Markers and Prostaglandin E2 Receptor EP2 Antagonist Effect in a Rat Model of Epileptogenesis. ACS Pharmacol Transl Sci 2022; 6:128-138. [PMID: 36654746 PMCID: PMC9841781 DOI: 10.1021/acsptsci.2c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) in patients results in a massive inflammatory reaction, disruption of blood-brain barrier, and oxidative stress in the brain, and these inciting features may culminate in the emergence of post-traumatic epilepsy (PTE). We hypothesize that targeting these pathways with pharmacological agents could be an effective therapeutic strategy to prevent epileptogenesis. To design therapeutic strategies targeting neuroinflammation and oxidative stress, we utilized a fluid percussion injury (FPI) rat model to study the temporal expression of neuroinflammatory and oxidative stress markers from 3 to 24 h following FPI. FPI results in increased mRNA expression of inflammatory mediators including cyclooxygenase-2 (COX-2) and prostanoid receptor EP2, marker of oxidative stress (NOX2), astrogliosis (GFAP), and microgliosis (CD11b) in ipsilateral cortex and hippocampus. The analysis of protein levels indicated a significant increase in the expression of COX-2 in ipsilateral hippocampus and cortex post-FPI. We tested FPI rats with an EP2 antagonist TG8-260 which produced a statistically significant reduction in the distribution of seizure duration post-FPI and trends toward a reduction in seizure incidence, seizure frequency, and duration, hinting a proof of concept that EP2 antagonism must be further optimized for therapeutic applications to prevent epileptogenesis.
Collapse
Affiliation(s)
- Varun Rawat
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Clifford L. Eastman
- Department
of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, Washington 98104, United States
| | - Radhika Amaradhi
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Avijit Banik
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jason S. Fender
- Department
of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, Washington 98104, United States
| | - Raymond J. Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Raimondo D’Ambrosio
- Department
of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, Washington 98104, United States,Regional
Epilepsy Center, University of Washington, 325 Ninth Avenue, Seattle, Washington 98104, United States
| | - Thota Ganesh
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States,. Phone: 404-727-7393. Fax: 404-727-0365
| |
Collapse
|
10
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
11
|
Lai JQ, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 2022; 33:451-462. [PMID: 35534336 DOI: 10.1016/j.tem.2022.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
Abstract
Cognitive dysfunction is a common adverse consequence of traumatic brain injury (TBI). After brain injury, the brain and other organs trigger a series of complex metabolic changes, including reduced glucose metabolism, enhanced lipid peroxidation, disordered neurotransmitter secretion, and imbalanced trace element synthesis. In recent years, several research and clinical studies have demonstrated that brain metabolism directly or indirectly affects cognitive dysfunction after TBI, but the mechanisms remain unclear. Drugs that improve the symptoms of cognitive dysfunction caused by TBI are under investigation and treatments that target metabolic processes are expected to improve cognitive function in the future. This review explores the impact of metabolic disorders on cognitive dysfunction after TBI and provides new strategies for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jin-Qing Lai
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
12
|
Kalkman HO. Potential Suicide Prophylactic Activity by the Fish Oil Metabolite, 4-Hydroxyhexenal. Int J Mol Sci 2022; 23:ijms23136953. [PMID: 35805959 PMCID: PMC9266565 DOI: 10.3390/ijms23136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Low levels of n-3 poly-unsaturated fatty acids (n-3 PUFAs) and high levels of n-6 PUFAs in the blood circulation are associated with an increased risk for suicide. Clinical studies indicate that docosahexaenoic acid (DHA, a n-3 PUFA found in fish-oil) displays protective effects against suicide. It has recently been proposed that the activation of the transcription factor NRF2 might be the pharmacological activity that is common to current anti-suicidal medications. Oxidation products from fish oil, including those from DHA, are electrophiles that reversibly bind to a protein ‘KEAP1’, which acts as the molecular inhibitor of NRF2 and so indirectly promotes NRF2-transcriptional activity. In the majority of publications, the NRF2-stimulant effect of DHA is ascribed to the metabolite 4-hydroxyhexenal (4HHE). It is suggested to investigate whether 4HHE will display a therapeutically useful anti-suicidal efficacy.
Collapse
|
13
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Heileson JL, Anzalone AJ, Carbuhn AF, Askow AT, Stone JD, Turner SM, Hillyer LM, Ma DWL, Luedke JA, Jagim AR, Oliver JM. The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study. J Int Soc Sports Nutr 2021; 18:65. [PMID: 34579748 PMCID: PMC8477477 DOI: 10.1186/s12970-021-00461-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season. Methods A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen’s dfor all between-group differences. Significance was set a priori at p< .05. Results Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 – .005, drange = 0.59-0.85]). Conclusions These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes. Trial registration This trial was registered with the ISRCTN registry (ISRCTN90306741).
Collapse
Affiliation(s)
- Jeffery L Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | | | - Andrew T Askow
- Nutrition and Exercise Performance Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jason D Stone
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stephanie M Turner
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joel A Luedke
- Athletics Department, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Andrew R Jagim
- Sports Medicine, Mayo Clinic Health Systems, Onalaska, WI, USA
| | - Jonathan M Oliver
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
16
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|