1
|
Ahmed MR, Inayathullah M, Morton M, Pothineni VR, Kim K, Ahmed MS, Babar MM, Rajadas J. Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice. Biomaterials 2024; 311:122680. [PMID: 38959534 DOI: 10.1016/j.biomaterials.2024.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mohammed Inayathullah
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Mithya Morton
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Children's Hospital of Orange County - UC Irvine School of Medicine, Department of Pediatrics, 505 S. Main St., Suite #525, Orange, CA, 92868, USA
| | - Venkata Raveendra Pothineni
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Kwangmin Kim
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Physiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Mohamed Sohail Ahmed
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, MCN 1161 21st Ave S. Nashville TN 37232, USA
| | - Mustafeez Mujtaba Babar
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
2
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
4
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
5
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
6
|
A Vahab S, Nair A, Raj D, G P A, P P S, S Kumar V. Cubosomes as versatile lipid nanocarriers for neurological disorder therapeutics: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3729-3746. [PMID: 38095651 DOI: 10.1007/s00210-023-02879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 05/23/2024]
Abstract
Cubosomes are novel vesicular drug delivery systems with lipidic liquid crystal nanoparticles formed of predetermined proportions of amphiphilic lipids. They have a honeycomb-like structure and are thermodynamically stable. These bicontinuous lipid layers are separated into two water-based channels internally that can be used by various bioactive substances, including drugs, proteins, and peptides. This complex structure is responsible for its high drug-loading capacity. Cubosomes are thought to be promising vehicles for various routes of administration because of their extraordinary characteristics, including bioadhesion, the capacity to encapsulate hydrophilic, and hydrophobic, as well as amphiphilic substances, high resistance to environmental stress, and their ability to achieve controlled release through modification. One of the essential elements for improving patient compliance is the ability of these well-defined nano-drug delivery systems to boost the effectiveness of targeting while lowering the side effects/toxicities of payloads. The large internal surface area, a sufficiently uncomplicated fabrication procedure, and biodegradability make it an attractive nano lipid carrier for drug delivery. This review outlines the recent advancement of cubosomes for managing various neurological disorders, highlighting their potential in this field.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ayushi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Devika Raj
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Akhil G P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Sreelakshmi P P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
7
|
Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024; 16:481. [PMID: 38675142 PMCID: PMC11055100 DOI: 10.3390/pharmaceutics16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The nose-to-brain drug-delivery system has emerged as a promising strategy to overcome the challenges associated with conventional drug administration for central nervous system disorders. This emerging field is driven by the anatomical advantages of the nasal route, enabling the direct transport of drugs from the nasal cavity to the brain, thereby circumventing the blood-brain barrier. This review highlights the significance of the anatomical features of the nasal cavity, emphasizing its high permeability and rich blood supply that facilitate rapid drug absorption and onset of action, rendering it a promising domain for neurological therapeutics. Exploring recent developments and innovations in different nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, micelles, nanoemulsions, nanosuspensions, carbon nanotubes, mesoporous silica nanoparticles, and nanogels unveils their diverse functions in improving drug-delivery efficiency and targeting specificity within this system. To minimize the potential risk of nanoparticle-induced toxicity in the nasal mucosa, this article also delves into the latest advancements in the formulation strategies commonly involving surface modifications, incorporating cutting-edge materials, the adjustment of particle properties, and the development of novel formulations to improve drug stability, release kinetics, and targeting specificity. These approaches aim to enhance drug absorption while minimizing adverse effects. These strategies hold the potential to catalyze the advancement of safer and more efficient nose-to-brain drug-delivery systems, consequently revolutionizing treatments for neurological disorders. This review provides a valuable resource for researchers, clinicians, and pharmaceutical-industry professionals seeking to advance the development of effective and safe therapies for central nervous system disorders.
Collapse
Affiliation(s)
- Shivani Gandhi
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Divyesh H. Shastri
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
8
|
Hassan DM, El-Kamel AH, Allam EA, Bakr BA, Ashour AA. Chitosan-coated nanostructured lipid carriers for effective brain delivery of Tanshinone IIA in Parkinson's disease: interplay between nuclear factor-kappa β and cathepsin B. Drug Deliv Transl Res 2024; 14:400-417. [PMID: 37598133 PMCID: PMC10761445 DOI: 10.1007/s13346-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba β (NF-Kβ) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.
Collapse
Affiliation(s)
- Donia M Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt.
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| |
Collapse
|
9
|
Darmanin C, Babayekhorasani F, Formosa A, Spicer P, Abbey B. Polarisation and rheology characterisation of monoolein/water liquid crystal dynamical behaviour during high-viscosity injector extrusion. J Colloid Interface Sci 2024; 653:1123-1136. [PMID: 37783012 DOI: 10.1016/j.jcis.2023.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
HYPOTHESIS The use of monoolein/water mixtures in serial crystallography experiments using high-viscosity injectors (HVI) results in significant departures from equilibrium behaviour. This is expected to include changes in phase, viscosity, and associated flow behaviour. It should be possible to detect these changes, in-situ, using a combination of polarisation and rheology characterisation techniques. EXPERIMENTS A systematic study was performed using monoolein, varying the water content to create a range of mixtures. Injection induced phase changes within the HVI flow were established using real-time cross-polarization measurements. Dynamic flow characteristics and viscosity was characterized by particle tracking and rheology. FINDINGS HVI injection induces deformation and phase changes within monoolein (MO)/water mixtures which can be detected through variations in the transmitted intensity during in-situ polarisation studies. The heterogeneity of the extruded sample results in a highly viscous cubic phase in the central region of the stream and a less viscous lamellar-rich phase at the edges adjacent to the walls. The extent of these variations depends on sample composition and injection conditions. Shear-thinning behaviour and increasing heterogeneity in the vicinity of the capillary walls under dynamic flow conditions. This is the first report observing injection induced dynamical behaviour in MO/water mixtures under realistic flow conditions.
Collapse
Affiliation(s)
- Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Firoozeh Babayekhorasani
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Andrew Formosa
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Patrick Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian Abbey
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
10
|
De Giglio E, Bakowsky U, Engelhardt K, Caponio A, La Pietra M, Cometa S, Castellani S, Guerra L, Fracchiolla G, Poeta ML, Mallamaci R, Cardone RA, Bellucci S, Trapani A. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders. Molecules 2023; 28:7706. [PMID: 38067437 PMCID: PMC10707881 DOI: 10.3390/molecules28237706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-β-cyclodextrin (Me-β-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-β-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-β-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-β-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Matteo La Pietra
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| |
Collapse
|
11
|
Xinchen Y, Jing T, Jiaoqiong G. Lipid-based nanoparticles via nose-to-brain delivery: a mini review. Front Cell Dev Biol 2023; 11:1214450. [PMID: 37675144 PMCID: PMC10477605 DOI: 10.3389/fcell.2023.1214450] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Central nervous system disorders significantly affect the lives and health of millions of people worldwide. Despite many therapeutic drugs are available that could potentially target central nervous system disorders, their clinical utility is severely constrained by their inability to cross the blood-brain barrier (BBB). Fortunately, nanotechnology has been advanced to offers a solution to allow drugs reaching the targeted brain regions safely, efficiently, and precisely through nasal drug delivery system (NDDS), bypassing the BBB completely. This strategy can promote the drug accumulated in the targeted brain region, improve drug bioavailability, and minimal side effects and mucociliary clearance effectively. In this review, we elaborate recent advances in the use of lipid-based nanoparticles, involving liposomes, nanoemulsions, nanostructured lipid carriers, and solid lipid nanoparticles. Besides, we particularly introduced the nasal cavity physiological structure, and further summarized the nose-to-brain drug delivery pathways, including olfactory, trigeminal, and blood circulation pathway. Moreover, the mechanism and route of NDDS by various types of nanoparticles are also highlighted.
Collapse
Affiliation(s)
- Yang Xinchen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Tan Jing
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Jiaoqiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
13
|
Nguyen TT, Nguyen-Thi PT, Nguyen THA, Ho TT, Tran NMA, Van Vo T, Van Vo G. Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders. Mol Diagn Ther 2023; 27:457-473. [PMID: 37217723 DOI: 10.1007/s40291-023-00654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Neurodegenerative diseases (NDs) such as dementia, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis are some of the most prevalent disorders currently afflicting healthcare systems. Many of these diseases share similar pathological hallmarks, including elevated oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation, all of which contribute to the deterioration of the nervous system's structure and function. The development of diagnostic and therapeutic materials in the monitoring and treatment of these diseases remains challenging. One of the biggest challenges facing therapeutic and diagnostic materials is the blood-brain barrier (BBB). The BBB is a multifunctional membrane possessing a plethora of biochemical, cellular, and immunological features that ensure brain homeostasis by preventing the entry and accumulation of unwanted compounds. With regards to neurodegenerative diseases, the recent application of tailored nanomaterials (nanocarriers and nanoparticles) has led to advances in diagnostics and therapeutics. In this review, we provide an overview of commonly used nanoparticles and their applications in NDs, which may offer new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | | | - Thi Hong Anh Nguyen
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
14
|
Meirinho S, Rodrigues M, Santos AO, Falcão A, Alves G. Nose-to-brain delivery of perampanel formulated in a self-microemulsifying drug delivery system improves anticonvulsant and anxiolytic activity in mice. Int J Pharm 2023:123145. [PMID: 37330157 DOI: 10.1016/j.ijpharm.2023.123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Perampanel (PER) is a potent third-generation antiepileptic drug only available for oral administration. Additionally, PER has shown potential in managing epilepsy comorbidities such as anxiety. Previously, we demonstrated that the intranasal (IN) administration of PER, loaded in a self-microemulsifying drug delivery system (SMEDDS), improved brain-targeting and exposure in mice. Herein, we investigated PER brain biodistribution, its anticonvulsant and anxiolytic effects, and its potential olfactory and neuromotor toxicity after IN administration to mice (1 mg/kg). PER showed a rostral-caudal brain biodistribution pattern when administered intranasally. At short times post-nasal dosing, high PER concentrations were found in olfactory bulbs (olfactory bulbs/plasma ratios of 1.266 ± 0.183 and 0.181 ± 0.027 after IN and intravenous administrations, respectively), suggesting that a fraction of the drug directly reaches brain through the olfactory pathway. In maximal electroshock seizure test, IN PER protected 60% of mice against seizure development, a substantially higher value than the 20% protected after receiving oral PER. . PER also demonstrated anxiolytic effects in open field and elevated plus maze tests. Buried food-seeking test showed no signs of olfactory toxicity. Neuromotor impairment was found in rotarod and open field tests at the times of PER maximum concentrations after IN and oral administrations. Nevertheless, neuromotor performance was improved after repeated administrations. Compared with IN vehicle, PER IN administration decreased brain levels of L-glutamate (0.91 ± 0.13 mg/mL vs 0.64 ± 0.12 mg/mL) and nitric oxide (100 ± 15.62% vs 56.62 ± 4.95%), without interfering in GABA levels. Altogether, these results suggest that the IN PER delivery through the developed SMEDDS can be a safe and promising alternative to oral treatment, which support the design of clinical studies to evaluate the IN PER delivery to treat epilepsy and neurological-related conditions as anxiety.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI-IPG - Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559 Guarda, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
15
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
16
|
Taléns-Visconti R, de Julián-Ortiz JV, Vila-Busó O, Diez-Sales O, Nácher A. Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15051399. [PMID: 37242641 DOI: 10.3390/pharmaceutics15051399] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer-type dementia (ATD) treatments face limitations in crossing the blood-brain barrier and systemic adverse effects. Intranasal administration offers a direct route to the brain via the nasal cavity's olfactory and trigeminal pathways. However, nasal physiology can hinder drug absorption and limit bioavailability. Therefore, the physicochemical characteristics of formulations must be optimized by means of technological strategies. Among the strategies that have been explored, lipid-based nanosystems, particularly nanostructured lipid carriers, are promising in preclinical investigations with minimal toxicity and therapeutic efficacy due to their ability to overcome challenges associated with other nanocarriers. We review the studies of nanostructured lipid carriers for intranasal administration in the treatment of ATD. Currently, no drugs for intranasal administration in ATD have marketing approval, with only three candidates, insulin, rivastigmine and APH-1105, being clinically investigated. Further studies with different candidates will eventually confirm the potential of the intranasal route of administration in the treatment of ATD.
Collapse
Affiliation(s)
- Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Jesus Vicente de Julián-Ortiz
- Molecular Topology and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Ofelia Vila-Busó
- Colloids Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
17
|
Law LH, Huang J, Xiao P, Liu Y, Chen Z, Lai JHC, Han X, Cheng GWY, Tse KH, Chan KWY. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI. J Control Release 2023; 354:208-220. [PMID: 36623695 DOI: 10.1016/j.jconrel.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Image guided nose-to-brain drug delivery provides a non-invasive way to monitor drug delivered to the brain, and the intranasal administration could increase effective dose via bypassing Blood Brain Barrier (BBB). Here, we investigated the imaging of liposome-based drug delivery to the brain via intranasal administration, in which the liposome could penetrate mucus and could be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) at 3T field strength. Liposomes were loaded with a computed tomography (CT) contrast agent, iohexol (Ioh-Lipo), which has specific amide protons exchanging at 4.3 ppm of Z-spectrum (or CEST spectrum). Ioh-Lipo generated CEST contrasts of 35.4% at 4.3 ppm, 1.8% at -3.4 ppm and 20.6% at 1.2 ppm in vitro. After intranasal administration, these specific CEST contrasts were observed in both olfactory bulb (OB) and frontal lobe (FL) in the case of 10% polyethylene glycol (PEG) Ioh-Lipo. We observed obvious increases in CEST contrast in OB half an hour after the injection of 10% PEG Ioh-Lipo, with a percentage increase of 62.0% at 4.3 ppm, 10.9% at -3.4 ppm and 25.7% at 1.2 ppm. Interestingly, the CEST map at 4.3 ppm was distinctive from that at -3.4 pm and 1.2 ppm. The highest contrast of 4.3 ppm was at the external plexiform layer (EPL) and the region between left and right OB (LROB), while the CEST contrast at -3.4 ppm had no significant difference among all investigated regions with slightly higher signal in olfactory limbus (OL, between OB and FL) and FL, as validated with histology. While no substantial increase of CEST contrast at 4.3 ppm, -3.4 ppm or 1.2 ppm was observed in OB and FL when 1% PEG Ioh-Lipo was administered. We demonstrated for the first time the feasibility of non-invasively detecting the nose-to-brain delivery of liposomes using CEST MRI. This multiple-contrast approach is necessary to image the specific distribution of iohexol and liposome simultaneously and independently, especially when designing drug carriers for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China; Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, China.
| |
Collapse
|
18
|
Bahadur S, Prakash A. A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration. Curr Drug Targets 2023; 24:71-88. [PMID: 36278468 DOI: 10.2174/1389450124666221019141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Brain tumors have become one of the deadliest cancers; however, their treatment is still limited by conventional approaches. Brain tumors, among other CNS diseases, are the most lethal form of cancer due to ineffective diagnosis and profiling. The major limiting factor in treating brain tumors is the blood-brain barrier (BBB), and the required therapeutic concentration is not achieved. Hence, most drugs are prescribed at higher doses, which have several unwanted side effects. Nanotechnology has emerged as an interesting and promising new approach for treating neurological disorders, including brain tumors, with the potential to overcome concerns related to traditional therapeutic approaches. Moreover, biomimetic nanomaterials have been introduced to successfully cross the blood-brain barrier and be consumed by deep skin cancer for imaging brain tumors using multimodal functional nanostructures for more specific and reliable medical assessment. These nanomedicines can address several challenges by enhancing the bioavailability of therapeutics through controlled pharmacokinetics and pharmacodynamics. Further nasal drug delivery has been considered as an alternative approach for the brain's targeting for the treatment of several CNS diseases. A drug can be directly delivered to the brain by bypassing the BBB through intranasal administration. This review discusses intranasal nanomedicine-based therapies for brain tumor targeting, which can be explored from different perspectives.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Anubhav Prakash
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
19
|
Nguyen TT, Bao NS, Van Vo G. Advances in Hydrogel-Based Drug Delivery Systems for Parkinson's Disease. Neurochem Res 2022; 47:2129-2141. [PMID: 35596041 DOI: 10.1007/s11064-022-03617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a common central nervous system disorder (CNS) characterized by cell loss in the substantia nigra. Severe loss of dopaminergic neurons and Lewy body formation with α-synuclein inclusions are the main neuropathological features of PD. There's currently no cure for PD, but treatments are available to help relieve the symptoms and maintain quality of life. However, the variety of clinically available therapeutic molecules is mainly limited to treating symptoms rather than halting or reversing disease progression via medical interventions. As an emerging drug carrier, hydrogels loaded with therapeutic agents and cells are attracting attention as an alternative and potentially more effective approach to managing PD. The current work highlights applications of hydrogel-based biomaterials in cell culture and disease modeling as carriers for cells, medicines, and proteins as PD therapeutic models.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Si Bao
- Department of Neurosurgery, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
20
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|