1
|
Kim W, Angulo MC. Unraveling the role of oligodendrocytes and myelin in pain. J Neurochem 2025; 169:e16206. [PMID: 39162089 PMCID: PMC11657919 DOI: 10.1111/jnc.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system (CNS), are crucial for rapid action potential conduction and neuronal communication. While extensively studied for their roles in neuronal support and axonal insulation, their involvement in pain modulation is an emerging research area. This review explores the interplay between oligodendrocytes, myelination, and pain, focusing on neuropathic pain following peripheral nerve injury, spinal cord injury (SCI), chemotherapy, and HIV infection. Studies indicate that a decrease in oligodendrocytes and increased cytokine production by oligodendroglia in response to injury can induce or exacerbate pain. An increase in endogenous oligodendrocyte precursor cells (OPCs) may be a compensatory response to repair damaged oligodendrocytes. Exogenous OPC transplantation shows promise in alleviating SCI-induced neuropathic pain and enhancing remyelination. Additionally, oligodendrocyte apoptosis in brain regions such as the medial prefrontal cortex is linked to opioid-induced hyperalgesia, highlighting their role in central pain mechanisms. Chemotherapeutic agents disrupt oligodendrocyte differentiation, leading to persistent pain, while HIV-associated neuropathy involves up-regulation of oligodendrocyte lineage cell markers. These findings underscore the multifaceted roles of oligodendrocytes in pain pathways, suggesting that targeting myelination processes could offer new therapeutic strategies for chronic pain management. Further research should elucidate the underlying molecular mechanisms to develop effective pain treatments.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine‐Based Drug Repositioning Cancer Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - María Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team: Interactions between Neurons and Oligodendroglia in Myelination and Myelin Repair”ParisFrance
- GHU PARIS Psychiatrie & NeurosciencesParisFrance
| |
Collapse
|
2
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
3
|
Zhang Y, Wang T, Wu S, Tang L, Wang J, Yang J, Yao S, Zhang Y. Notch signaling pathway: a new target for neuropathic pain therapy. J Headache Pain 2023; 24:87. [PMID: 37454050 PMCID: PMC10349482 DOI: 10.1186/s10194-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Notch gene, a highly evolutionarily conserved gene, was discovered approximately 110 years ago and has been found to play a crucial role in the development of multicellular organisms. Notch receptors and their ligands are single-pass transmembrane proteins that typically require cellular interactions and proteolytic processing to facilitate signal transduction. Recently, mounting evidence has shown that aberrant activation of the Notch is correlated with neuropathic pain. The activation of the Notch signaling pathway can cause the activation of neuroglia and the release of pro-inflammatory factors, a key mechanism in the development of neuropathic pain. Moreover, the Notch signaling pathway may contribute to the persistence of neuropathic pain by enhancing synaptic transmission and calcium inward flow. This paper reviews the structure and activation of the Notch signaling pathway, as well as its potential mechanisms of action, to provide novel insights for future treatments of neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Tang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Research Center for Brain-Inspired Intelligence, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation En-Gineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P. R. China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Jinghan Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
4
|
Wu Z, Li M. High-Mobility Group Box 1 in Spinal Cord Injury and Its Potential Role in Brain Functional Remodeling After Spinal Cord Injury. Cell Mol Neurobiol 2023; 43:1005-1017. [PMID: 35715656 DOI: 10.1007/s10571-022-01240-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
High-mobility group box 1 (HMGB1) is a nonhistone nuclear protein, the functions of which depend on its subcellular location. It is actively or passively secreted into the blood and/or cerebrospinal fluid (CSF) and can be used as a prognostic indicator of disease. HMGB1 released into the bloodstream can cause pathological reactions in distant organs, and entry into the CSF can destroy the blood-brain barrier and aggravate brain injuries. HMGB1 expression has been reported to be increased in the tissues of spinal cord injury (SCI) patients and involved in the regulation of neuroinflammation, neuronal apoptosis, and ferroptosis. SCI can lead to brain changes, resulting in neuropathic pain, depression, and cognitive dysfunction, but the specific mechanism is unknown. It remains unclear whether HMGB1 plays an important role in brain functional remodeling after SCI. Damaged cells at the site of SCI passively release HMGB1, which travels to the brain via the blood, CSF, and/or axonal transport, destroys the blood-brain barrier, and causes pathological changes in the brain. This may explain the remodeling of brain function that occurs after SCI. In this minireview, we introduce the structure and function of HMGB1 and its mechanism of action in SCI. Clarifying the functions of HMGB1 may provide insight into the links between SCI and various brain regions.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China
| | - Meihua Li
- Department of Neurosurgery & Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17th Yongwaizheng Street, Nanchang, 330006, China.
| |
Collapse
|