1
|
Khadour FA, Khadour YA, Xu T. Electroacupuncture for juvenile idiopathic arthritis: clinical efficacy and its role in modulating pyroptosis and autophagy pathways. Clin Rheumatol 2025:10.1007/s10067-025-07346-7. [PMID: 40019598 DOI: 10.1007/s10067-025-07346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is a common chronic inflammatory disorder in children, leading to significant physical and psychosocial challenges. Current treatments often fall short, prompting interest in complementary therapies. This study aims to evaluate the effectiveness of electroacupuncture (EA) on clinical outcomes in children with JIA, focusing on its impact on the pyroptosis pathway and autophagy function. METHODS A randomized controlled clinical trial was conducted from 7 November 2023 to 12 January 2025. A total of 106 participants were recruited and randomly assigned to receive EA or sham acupuncture (SA) for 8 weeks. Clinical assessments, including functional ability, pain scores, and quality of life, were measured at baseline, week 4, week 8, month 3, and month 6. Serum levels of pyroptosis-related proteins and autophagy markers were analyzed to elucidate the underlying mechanisms. RESULTS The EA group showed significant improvements in functional ability and pain scores compared to the SA group at both week 4 and week 8. Notable reductions in serum levels of pyroptosis markers (caspase-1, GSDMD, NLRP3) and pro-inflammatory cytokines (IL-1β, IL-18) were observed in the EA group. Additionally, autophagy markers (LC3, Becline1) significantly decreased after EA treatment, suggesting enhanced autophagic activity. CONCLUSION This study demonstrates that electroacupuncture is a safe and effective adjunctive treatment for improving function and reducing pain in children with JIA. The observed biological changes indicate potential anti-inflammatory effects, supporting EA's role in comprehensive JIA management. Future research should explore long-term outcomes and mechanisms for these findings further. Key Points • The study demonstrates that electroacupuncture (EA) significantly improves functional ability and pain scores in children with juvenile idiopathic arthritis (JIA) compared to sham acupuncture. • EA treatment led to notable reductions in serum levels of pyroptosis-related proteins and pro-inflammatory cytokines, indicating its potential role in modulating inflammatory pathways. • The research observed significant changes in autophagy markers post-EA treatment, suggesting that EA may enhance autophagic function in children with JIA. • EA is presented as a safe adjunctive therapy for JIA management, with implications for further research into its long-term effects and underlying mechanisms.
Collapse
Affiliation(s)
- Fater A Khadour
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095#, Jie-Fang Avenue, Wuhan, 430030, Hubei, China
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Health Science Faculty, Al-Baath University, Homs, Syria
| | - Younes A Khadour
- Department of Rehabilitation, Faculty of Medicine, Al Baath University, Homs, Syria
- Department of Physical Therapy, Cairo University, Cairo, 11835, Egypt
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, 1095#, Jie-Fang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Xu D, Chu M, Chen Y, Fang Y, Wang J, Zhang X, Xu F. Identification and verification of ferroptosis-related genes in the pathology of epilepsy: insights from CIBERSORT algorithm analysis. Front Neurol 2023; 14:1275606. [PMID: 38020614 PMCID: PMC10644861 DOI: 10.3389/fneur.2023.1275606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a neurological disorder characterized by recurrent seizures. A mechanism of cell death regulation, known as ferroptosis, which involves iron-dependent lipid peroxidation, has been implicated in various diseases, including epilepsy. Objective This study aimed to provide a comprehensive understanding of the relationship between ferroptosis and epilepsy through bioinformatics analysis. By identifying key genes, pathways, and potential therapeutic targets, we aimed to shed light on the underlying mechanisms involved in the pathogenesis of epilepsy. Materials and methods We conducted a comprehensive analysis by screening gene expression data from the Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs) related to ferroptosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to gain insights into the biological processes and pathways involved. Moreover, we constructed a protein-protein interaction (PPI) network to identify hub genes, which was further validated using the receiver operating characteristic (ROC) curve analysis. To explore the relationship between immune infiltration and genes, we employed the CIBERSORT algorithm. Furthermore, we visualized four distinct interaction networks-mRNA-miRNA, mRNA-transcription factor, mRNA-drug, and mRNA-compound-to investigate potential regulatory mechanisms. Results In this study, we identified a total of 33 differentially expressed genes (FDEGs) associated with epilepsy and presented them using a Venn diagram. Enrichment analysis revealed significant enrichment in the pathways related to reactive oxygen species, secondary lysosomes, and ubiquitin protein ligase binding. Furthermore, GSVA enrichment analysis highlighted significant differences between epilepsy and control groups in terms of the generation of precursor metabolites and energy, chaperone complex, and antioxidant activity in Gene Ontology (GO) analysis. Furthermore, during the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we observed differential expression in pathways associated with amyotrophic lateral sclerosis (ALS) and acute myeloid leukemia (AML) between the two groups. To identify hub genes, we constructed a protein-protein interaction (PPI) network using 30 FDEGs and utilized algorithms. This analysis led to the identification of three hub genes, namely, HIF1A, TLR4, and CASP8. The application of the CIBERSORT algorithm allowed us to explore the immune infiltration patterns between epilepsy and control groups. We found that CD4-naïve T cells, gamma delta T cells, M1 macrophages, and neutrophils exhibited higher expression in the control group than in the epilepsy group. Conclusion This study identified three FDEGs and analyzed the immune cells in epilepsy. These findings pave the way for future research and the development of innovative therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ManMan Chu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - YaoYao Chen
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - JingGuang Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XiaoLi Zhang
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - FaLin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Chen C, Zhu T, Gong L, Hu Z, Wei H, Fan J, Lin D, Wang X, Xu J, Dong X, Wang Y, Xia N, Zeng L, Jiang P, Xie Y. Trpm2 deficiency in microglia attenuates neuroinflammation during epileptogenesis by upregulating autophagy via the AMPK/mTOR pathway. Neurobiol Dis 2023; 186:106273. [PMID: 37648036 DOI: 10.1016/j.nbd.2023.106273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders. Neuroinflammation involving the activation of microglia and astrocytes constitutes an important and common mechanism in epileptogenesis. Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, non-selective cation channel that plays pathological roles in various inflammation-related diseases. Our previous study demonstrated that Trpm2 knockout exhibits therapeutic effects on pilocarpine-induced glial activation and neuroinflammation. However, whether TRPM2 in microglia and astrocytes plays a common pathogenic role in this process and the underlying molecular mechanisms remained undetermined. Here, we demonstrate a previously unknown role for microglial TRPM2 in epileptogenesis. Trpm2 knockout in microglia attenuated kainic acid (KA)-induced glial activation, inflammatory cytokines production and hippocampal paroxysmal discharges, whereas Trpm2 knockout in astrocytes exhibited no significant effects. Furthermore, we discovered that these therapeutic effects were mediated by upregulated autophagy via the adenosine monophosphate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in microglia. Thus, our findings highlight an important deleterious role of microglial TRPM2 in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Lifen Gong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Zhe Hu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Hao Wei
- Department of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jianchen Fan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Donghui Lin
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xiaojun Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Junyu Xu
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Xinyan Dong
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Yifan Wang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Ningxiao Xia
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Peifang Jiang
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| | - Yicheng Xie
- Department of Neurology, Department of Neurobiology and Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou 310052, China.
| |
Collapse
|
5
|
Skiba A, Pellegata D, Morozova V, Kozioł E, Budzyńska B, Lee SMY, Gertsch J, Skalicka-Woźniak K. Pharmacometabolic Effects of Pteryxin and Valproate on Pentylenetetrazole-Induced Seizures in Zebrafish Reveal Vagus Nerve Stimulation. Cells 2023; 12:1540. [PMID: 37296660 PMCID: PMC10252891 DOI: 10.3390/cells12111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Zebrafish (Danio rerio) assays provide a versatile pharmacological platform to test compounds on a wide range of behaviors in a whole organism. A major challenge lies in the lack of knowledge about the bioavailability and pharmacodynamic effects of bioactive compounds in this model organism. Here, we employed a combined methodology of LC-ESI-MS/MS analytics and targeted metabolomics with behavioral experiments to evaluate the anticonvulsant and potentially toxic effects of the angular dihydropyranocoumarin pteryxin (PTX) in comparison to the antiepileptic drug sodium valproate (VPN) in zebrafish larvae. PTX occurs in different Apiaceae plants traditionally used in Europe to treat epilepsy but has not been investigated so far. To compare potency and efficacy, the uptake of PTX and VPN into zebrafish larvae was quantified as larvae whole-body concentrations together with amino acids and neurotransmitters as proxy pharmacodynamic readout. The convulsant agent pentylenetetrazole (PTZ) acutely reduced the levels of most metabolites, including acetylcholine and serotonin. Conversely, PTX strongly reduced neutral essential amino acids in a LAT1 (SLCA5)-independent manner, but, similarly to VPN specifically increased the levels of serotonin, acetylcholine, and choline, but also ethanolamine. PTX dose and time-dependent manner inhibited PTZ-induced seizure-like movements resulting in a ~70% efficacy after 1 h at 20 µM (the equivalent of 4.28 ± 0.28 µg/g in larvae whole-body). VPN treated for 1 h with 5 mM (the equivalent of 18.17 ± 0.40 µg/g in larvae whole-body) showed a ~80% efficacy. Unexpectedly, PTX (1-20 µM) showed significantly higher bioavailability than VPN (0.1-5 mM) in immersed zebrafish larvae, possibly because VPN in the medium dissociated partially to the readily bioavailable valproic acid. The anticonvulsive effect of PTX was confirmed by local field potential (LFP) recordings. Noteworthy, both substances specifically increased and restored whole-body acetylcholine, choline, and serotonin levels in control and PTZ-treated zebrafish larvae, indicative of vagus nerve stimulation (VNS), which is an adjunctive therapeutic strategy to treat refractory epilepsy in humans. Our study demonstrates the utility of targeted metabolomics in zebrafish assays and shows that VPN and PTX pharmacologically act on the autonomous nervous system by activating parasympathetic neurotransmitters.
Collapse
Affiliation(s)
- Adrianna Skiba
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Daniele Pellegata
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | - Veronika Morozova
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | - Ewelina Kozioł
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 519020, China;
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland (V.M.)
| | | |
Collapse
|
6
|
Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. Brain Behav 2023; 13:e2995. [PMID: 37221133 PMCID: PMC10275542 DOI: 10.1002/brb3.2995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Epilepsy is one of the most common and serious brain syndromes and has adverse consequences on a patient's neurobiological, cognitive, psychological, and social wellbeing, thereby threatening their quality of life. Some patients with epilepsy experience poor treatment effects due to the unclear pathophysiological mechanisms of the syndrome. Dysregulation of the mammalian target of the rapamycin (mTOR) pathway is thought to play an important role in the onset and progression of some epilepsies. METHODS This review summarizes the role of the mTOR signaling pathway in the pathogenesis of epilepsy and the prospects for the use of mTOR inhibitors. RESULTS The mTOR pathway functions as a vital mediator in epilepsy development through diverse mechanisms, indicating that the it has great potential as an effective target for epilepsy therapy. The excessive activation of mTOR signaling pathway leads to structural changes in neurons, inhibits autophagy, exacerbates neuron damage, affects mossy fiber sprouting, enhances neuronal excitability, increases neuroinflammation, and is closely associated with tau upregulation in epilepsy. A growing number of studies have demonstrated that mTOR inhibitors exhibit significant antiepileptic effects in both clinical applications and animal models. Specifically, rapamycin, a specific inhibitor of TOR, reduces the intensity and frequency of seizures. Clinical studies in patients with tuberous sclerosis complex have shown that rapamycin has the function of reducing seizures and improving this disease. Everolimus, a chemically modified derivative of rapamycin, has been approved as an added treatment to other antiepileptic medicines. Further explorations are needed to evaluate the therapeutic efficacy and application value of mTOR inhibitors in epilepsy. CONCLUSIONS Targeting the mTOR signaling pathway provides a promising prospect for the treatment of epilepsy.
Collapse
Affiliation(s)
- Wei Zhao
- Department of GerontologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Cong Xie
- Department of GerontologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Xu Zhang
- Department of GerontologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Ju Liu
- Laboratory of Microvascular MedicineMedical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityJinanChina
| | - Jinzhi Liu
- Department of GerontologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Department of NeurologyLiaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical UniversityLiaochengChina
- Department of GerontologyCheeloo College of MedicineShandong Provincial Qianfoshan Hospital, Shandong UniversityJinanChina
- Department of Geriatric NeurologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Zhangyong Xia
- Department of NeurologyLiaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical UniversityLiaochengChina
- Department of NeurologyCheeloo College of MedicineLiaocheng People's Hospital, Shandong UniversityJinanChina
| |
Collapse
|
7
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|