1
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Tuck AF. Natural Selection and Scale Invariance. Life (Basel) 2023; 13:life13040917. [PMID: 37109446 PMCID: PMC10144207 DOI: 10.3390/life13040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
This review points out that three of the essential features of natural selection—competition for a finite resource, variation, and transmission of memory—occur in an extremely simple, thermalized molecular population, one of colliding “billiard balls” subject to an anisotropy, a directional flux of energetic molecules. The emergence of scaling behavior, scale invariance, in such systems is considered in the context of the emergence of complexity driven by Gibbs free energy, the origins of life, and known chemistries in planetary and astrophysical conditions. It is suggested that the thermodynamic formalism of statistical multifractality offers a parallel between the microscopic and macroscopic views of non-equilibrium systems and their evolution, different from, empirically determinable, and therefore complementing traditional definitions of entropy and its production in living systems. Further, the approach supports the existence of a bridge between microscopic and macroscopic scales, the missing mesoscopic scale. It is argued that natural selection consequently operates on all scales—whether or not life results will depend on both the initial and the evolving boundary conditions. That life alters the boundary conditions ensures nonlinearity and scale invariance. Evolution by natural selection will have taken place in Earth’s fluid envelope; both air and water display scale invariance and are far from chemical equilibrium, a complex condition driven by the Gibbs free energy arising from the entropy difference between the incoming solar beam and the outgoing infrared radiation to the cold sink of space acting on the initial conditions within evolving boundary conditions. Symmetry breaking’s role in the atmospheric state is discussed, particularly in regard to aerosol fission in the context of airborne bacteria and viruses in both current and prebiotic times. Over 4.4 billion years, the factors operating to support natural selection will have evolved along with the entire system from relative simplicity to the current complexity.
Collapse
|
3
|
Nader S, Baccouche A, Connolly F, Abou-Ghanem M, Styler SA, Lewis JD, Pink D, Mansy SS. Model Atmospheric Aerosols Convert to Vesicles upon Entry into Aqueous Solution. ACS EARTH & SPACE CHEMISTRY 2023; 7:252-259. [PMID: 36704180 PMCID: PMC9869892 DOI: 10.1021/acsearthspacechem.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Aerosols are abundant on the Earth and likely played a role in prebiotic chemistry. Aerosol particles coagulate, divide, and sample a wide variety of conditions conducive to synthesis. While much work has centered on the generation of aerosols and their chemistry, little effort has been expended on their fate after settling. Here, using a laboratory model, we show that aqueous aerosols transform into cell-sized protocellular structures upon entry into aqueous solution containing lipid. Such processes provide for a heretofore unexplored pathway for the assembly of the building blocks of life from disparate geochemical regions within cell-like vesicles with a lipid bilayer in a manner that does not lead to dilution. The efficiency of aerosol to vesicle transformation is high with prebiotically plausible lipids, such as decanoic acid and decanol, that were previously shown to be capable of forming growing and dividing vesicles. The high transformation efficiency with 10-carbon lipids in landing solutions is consistent with the surface properties and dynamics of short-chain lipids. Similar processes may be operative today as fatty acids are common constituents of both contemporary aerosols and the sea. Our work highlights a new pathway that may have facilitated the emergence of the Earth's first cells.
Collapse
Affiliation(s)
- Serge Nader
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| | - Alexandre Baccouche
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| | - Fiona Connolly
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| | - Maya Abou-Ghanem
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| | - Sarah A. Styler
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| | - John D. Lewis
- Department
of Oncology, University of Alberta, Edmonton, AlbertaT6G 2E1, Canada
| | - Desmond Pink
- Nanostics
Inc., Edmonton, AlbertaT5J 4P6, Canada
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, Edmonton, AlbertaT6G 2N4, Canada
| |
Collapse
|
4
|
Root-Bernstein R, Baker AG, Rhinesmith T, Turke M, Huber J, Brown AW. "Sea Water" Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life (Basel) 2023; 13:265. [PMID: 36836628 PMCID: PMC9959757 DOI: 10.3390/life13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
The standard approach to exploring prebiotic chemistry is to use a small number of highly purified reactants and to attempt to optimize the conditions required to produce a particular end product. However, purified reactants do not exist in nature. We have previously proposed that what drives prebiotic evolution are complex chemical ecologies. Therefore, we have begun to explore what happens if one substitutes "sea water", with its complex mix of minerals and salts, for distilled water in the classic Miller experiment. We have also adapted the apparatus to permit it to be regassed at regular intervals so as to maintain a relatively constant supply of methane, hydrogen, and ammonia. The "sea water" used in the experiments was created from Mediterranean Sea salt with the addition of calcium phosphate and magnesium sulfate. Tests included several types of mass spectrometry, an ATP-monitoring device capable of measuring femtomoles of ATP, and a high-sensitivity cAMP enzyme-linked immunoadsorption assay. As expected, amino acids appeared within a few days of the start of the experiment and accumulated thereafter. Sugars, including glucose and ribose, followed as did long-chain fatty acids (up to C20). At three-to-five weeks after starting the experiment, ATP was repeatedly detected. Thus, we have shown that it is possible to produce a "one-pot synthesis" of most of the key chemical prerequisites for living systems within weeks by mimicking more closely the complexity of real-world chemical ecologies.
Collapse
Affiliation(s)
| | - Andrew G. Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Adam W. Brown
- Department of Art, Art History and Design, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Root-Bernstein R, Brown AW. Novel Apparatuses for Incorporating Natural Selection Processes into Origins-of-Life Experiments to Produce Adaptively Evolving Chemical Ecosystems. Life (Basel) 2022; 12:1508. [PMID: 36294944 PMCID: PMC9605314 DOI: 10.3390/life12101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Abstract
Origins-of-life chemical experiments usually aim to produce specific chemical end-products such as amino acids, nucleic acids or sugars. The resulting chemical systems do not evolve or adapt because they lack natural selection processes. We have modified Miller origins-of-life apparatuses to incorporate several natural, prebiotic physicochemical selection factors that can be tested individually or in tandem: freezing-thawing cycles; drying-wetting cycles; ultraviolet light-dark cycles; and catalytic surfaces such as clays or minerals. Each process is already known to drive important origins-of-life chemical reactions such as the production of peptides and synthesis of nucleic acid bases and each can also destroy various reactants and products, resulting selection within the chemical system. No previous apparatus has permitted all of these selection processes to work together. Continuous synthesis and selection of products can be carried out over many months because the apparatuses can be re-gassed. Thus, long-term chemical evolution of chemical ecosystems under various combinations of natural selection may be explored for the first time. We argue that it is time to begin experimenting with the long-term effects of such prebiotic natural selection processes because they may have aided biotic life to emerge by taming the combinatorial chemical explosion that results from unbounded chemical syntheses.
Collapse
Affiliation(s)
| | - Adam W. Brown
- Department of Art, Art History and Design, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Lavado N, de la Concepción JG, Cintas P, Babiano R. Synthesis of C xN y-rich polycyclic oligomers from primeval monomers in aqueous media. Phys Chem Chem Phys 2022; 24:3632-3646. [PMID: 35103738 DOI: 10.1039/d1cp05204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multichannel, non-thermolytic and efficient pathway is described toward the formation of functionalized carbon nitride-like oligomers, starting from readily available cyanamide and glyoxal (in ratios >2), in aqueous media under mild conditions. Such oligomers can be isolated as stable solids that result from structures involving cyanamide self-additions along with structures formally derived from the condensation of cyanamide, dicyandiamide or melamine with glyoxal, leading occasionally to oxygen-containing units. The oligomeric aggregates have masses up to 500 u, as inferred from mass spectra analyses, and their formation can be rationalized in terms of polyadditions of cyanamide (up to 10-mer) and glyoxal. The latter is not only a willing reaction partner, but also promotes facile condensation by enhancing the reactivity of nitrile fragments and inducing a significant lowering of the energy barriers. This mechanistic surmise is also supported by DFT calculations of the early condensation steps. As a result, melamine/triazine-type structures are obtained in aquatic environments under much milder conditions than those usually required by other synthetic procedures. Moreover, our results also help unveil the abiotic processes affording complex organic matter on celestial bodies and early earth.
Collapse
Affiliation(s)
- Nieves Lavado
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Juan García de la Concepción
- Departamento de Astrofísica, Centro de Astrobiología (INTA-CSIC), 28850 Torrejón de Ardoz, Madrid, Spain.,Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| |
Collapse
|
7
|
Micellar electrokinetic chromatography as a powerful analytical tool for research on prebiotic chemistry. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Prebiotic Phosphorylation of Uridine using Diamidophosphate in Aerosols. Sci Rep 2019; 9:13527. [PMID: 31537885 PMCID: PMC6753121 DOI: 10.1038/s41598-019-49947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
One of the most challenging fundamental problems in establishing prebiotically plausible routes for phosphorylation reactions using phosphate is that they are thermodynamically unfavorable in aqueous conditions. Diamidophosphate (DAP), a potentially prebiotically relevant compound, was shown to phosphorylate nucleosides in aqueous medium, albeit at a very slow rate (days/weeks). Here, we demonstrate that performing these reactions within an aerosol environment, a suitable model for the early Earth ocean-air interface, yields higher reaction rates when compared to bulk solution, thus overcoming these rate limitations. As a proof-of-concept, we demonstrate the effective conversion (~6.5–10%) of uridine to uridine-2′,3′-cyclophosphate in less than 1 h. These results suggest that aerosol environments are a possible scenario in which prebiotic phosphorylation could have occurred despite unfavorable rates in bulk solution.
Collapse
|
9
|
Prebiotic chemistry in neutral/reduced-alkaline gas-liquid interfaces. Sci Rep 2019; 9:1916. [PMID: 30760732 PMCID: PMC6374446 DOI: 10.1038/s41598-018-36579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/25/2018] [Indexed: 11/09/2022] Open
Abstract
The conditions for the potential abiotic formation of organic compounds from inorganic precursors have great implications for our understanding of the origin of life on Earth and for its possible detection in other environments of the Solar System. It is known that aerosol-interfaces are effective at enhancing prebiotic chemical reactions, but the roles of salinity and pH have been poorly investigated to date. Here, we experimentally demonstrate the uniqueness of alkaline aerosols as prebiotic reactors that produce an undifferentiated accumulation of a variety of multi-carbon biomolecules resulting from high-energy processes (in our case, electrical discharges). Using simulation experiments, we demonstrate that the detection of important biomolecules in tholins increases when plausible and particular local planetary environmental conditions are simulated. A greater diversity in amino acids, carboxylic acids, N-heterocycles, and ketoacids, such as glyoxylic and pyruvic acid, was identified in tholins synthetized from reduced and neutral atmospheres in the presence of alkaline aqueous aerosols than that from the same atmospheres but using neutral or acidic aqueous aerosols.
Collapse
|
10
|
Menor-Salván C. From the Dawn of Organic Chemistry to Astrobiology: Urea as a Foundational Component in the Origin of Nucleobases and Nucleotides. PREBIOTIC CHEMISTRY AND CHEMICAL EVOLUTION OF NUCLEIC ACIDS 2018. [DOI: 10.1007/978-3-319-93584-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Jamshidi MP, MacDonald MJ, Beauchemin AM. On the Ability of Formaldehyde to Act as a Tethering Catalyst in Water. ORIGINS LIFE EVOL B 2017; 47:405-412. [PMID: 28474281 DOI: 10.1007/s11084-017-9538-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
The low concentration issue is a fundamental challenge when it comes to prebiotic chemistry, as macromolecular systems need to be assembled via intermolecular reactions, and this is inherently difficult in dilute solutions. This is especially true when the reactions are challenging, and reactions that proceeded more rapidly could have dictated chemical evolution. Herein we establish that formaldehyde is capable of catalyzing, via temporary intramolecularity, a challenging reaction in water at low concentrations, thus providing an alternative to other approaches that can either lead to higher concentrations or higher effective molarities.
Collapse
Affiliation(s)
- Mohammad P Jamshidi
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Melissa J MacDonald
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - André M Beauchemin
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
12
|
Marín-Yaseli MR, González-Toril E, Mompeán C, Ruiz-Bermejo M. The Role of Aqueous Aerosols in the “Glyoxylate Scenario”: An Experimental Approach. Chemistry 2016; 22:12785-99. [DOI: 10.1002/chem.201602195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Margarita R. Marín-Yaseli
- Departamento de Evolución Molecular; Centro de Astrobiología (INTA-CSIC); Ctra. Torrejón-Ajlavir km 4,8 28850 Torrejón de Ardoz Madrid Spain
| | - Elena González-Toril
- Departamento de Evolución Molecular; Centro de Astrobiología (INTA-CSIC); Ctra. Torrejón-Ajlavir km 4,8 28850 Torrejón de Ardoz Madrid Spain
| | - Cristina Mompeán
- Departamento de Evolución Molecular; Centro de Astrobiología (INTA-CSIC); Ctra. Torrejón-Ajlavir km 4,8 28850 Torrejón de Ardoz Madrid Spain
| | - Marta Ruiz-Bermejo
- Departamento de Evolución Molecular; Centro de Astrobiología (INTA-CSIC); Ctra. Torrejón-Ajlavir km 4,8 28850 Torrejón de Ardoz Madrid Spain
| |
Collapse
|
13
|
Abstract
The genesis of life on Earth is a hypothesis of evolutionary science that can be, at least partially, tested experimentally. The prebiotic synthesis of cofactors or coenzymes is a poorly explored issue, likely because their formation under plausible prebiotic conditions is not clear. In this sense, it has been proposed that the cofactors are "molecular fossils" of an early phase of life. In contrast, Eschenmoser and Loewenthal suggested a prebiotic hydrocyanic origin of cofactor building blocks. In the present paper, the formation of a set of pterins from cyanide polymerizations is demonstrated, showing that the main structure of some cofactors can be prebiotically formed. Indeed, it was observed that aqueous aerosols additionally increase the relative composition for pterins in the insoluble NH4CN polymers synthesized. The novel identification of pterins in NH4CN polymers, together with the previous detection of other important biomonomers, indicates that cyanide polymerizations were essential in the early state of prebiotic chemistry.
Collapse
Affiliation(s)
- Margarita R Marín-Yaseli
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid (Spain)
| | - Cristina Mompeán
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid (Spain)
| | - Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid (Spain).
| |
Collapse
|
14
|
|
15
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Ruiz-Bermejo M, Osuna-Esteban S, Zorzano MP. Role of ferrocyanides in the prebiotic synthesis of α-amino acids. ORIGINS LIFE EVOL B 2013; 43:191-206. [PMID: 23780697 DOI: 10.1007/s11084-013-9336-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids. We showed how HCN captured as Prussian Blue (or another complex compound) may, in turn, have served as the HCN source when exposed to UV radiation, allowing for the sustained production of amino acids in conjunction with the production of oxyhydroxides that precipitate as by-products. We conclude that ferrocyanides and related compounds may have played a significant role as intermediate products in the prebiotic formation of amino acids and oxyhydroxides, such as those that are found in iron-containing soils and that the aerosol cycle of the primitive ocean may have enhanced the yield of the amino acid production.
Collapse
Affiliation(s)
- Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas INTA-CSIC), Carretera Torrejón-Ajalvir, Km 4, 28850, Torrejón de Ardoz, Madrid, Spain.
| | | | | |
Collapse
|
17
|
Griffith EC, Tuck AF, Vaida V. Ocean-atmosphere interactions in the emergence of complexity in simple chemical systems. Acc Chem Res 2012; 45:2106-13. [PMID: 22509900 DOI: 10.1021/ar300027q] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The prebiotic conversion of simple organic molecules into complex biopolymers necessary for life can only have emerged on a stage set by geophysics. The transition between "prebiotic soup," the diverse mixture of small molecules, and complex, self-replicating organisms requires passing through the bottleneck of fundamental chemistry. In this Account, we examine how water-air interfaces, namely, the surfaces of lakes, oceans, and atmospheric aerosols on ancient Earth, facilitated the emergence of complex structures necessary for life. Aerosols are liquid or solid suspensions in air with a broad, power law size distribution. Collectively, these globally distributed atmospheric particles have an enormous surface area. Organic films at the interface between water and air offer advantages for biomolecular synthesis compared with the bulk and can simultaneously participate in the folding of biopolymers into primitive enclosed structures. We survey the advantages of the water-air interface for prebiotic chemistry in a geophysical context from three points of view. We examine the formation of biopolymers from simple organic precursors and describe the necessity and availability of enclosures. In addition, we provide a statistical mechanical approach to natural selection and emergence of complexity that proposes a link between these molecular mechanisms and macroscopic scales. Very large aerosol populations were ubiquitous on ancient Earth, and the surfaces of lakes, oceans, and atmospheric aerosols would have provided an auspicious environment for the emergence of complex structures necessary for life. These prebiotic reactors would inevitably have incorporated the products of chemistry into their anhydrous, two-dimensional organic films in the three-dimensional fluids of the gaseous atmosphere and the liquid ocean. The untrammeled operation of natural selection on these aerosols provided the likely location where condensation reactions could form biopolymers by elimination of water. The fluctuating exposure of the large, recycling aerosol populations to radiation, pressure, temperature, and humidity over geological time allows complexity to emerge from simple molecular precursors. We propose an approach that connects chemical statistical thermodynamics and the macroscopic world of the planetary ocean and atmosphere.
Collapse
Affiliation(s)
- Elizabeth C. Griffith
- Department of Chemistry and Biochemistry and CIRES, University of Colorado, Boulder Colorado 80309, United States
| | - Adrian F. Tuck
- Department of Physics, Imperial College London, SW7 2AZ, UK
| | - Veronica Vaida
- Department of Chemistry and Biochemistry and CIRES, University of Colorado, Boulder Colorado 80309, United States
| |
Collapse
|
18
|
Griffith EC, Adams EM, Allen HC, Vaida V. Hydrophobic Collapse of a Stearic Acid Film by Adsorbed l-Phenylalanine at the Air–Water Interface. J Phys Chem B 2012; 116:7849-57. [DOI: 10.1021/jp303913e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elizabeth C. Griffith
- Department of Chemistry and
Biochemistry and CIRES, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Ellen M. Adams
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C. Allen
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Veronica Vaida
- Department of Chemistry and
Biochemistry and CIRES, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Ruiz-Bermejo M, de la Fuente JL, Rogero C, Menor-Salván C, Osuna-Esteban S, Martín-Gago JA. New Insights into the Characterization of ‘Insoluble Black HCN Polymers’. Chem Biodivers 2012; 9:25-40. [DOI: 10.1002/cbdv.201100036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverría A, Urtuvia VN, Ruiz-Bermejo M, García-Villadangos M, Postigo M, Sánchez-Román M, Chong-Díaz G, Gómez-Elvira J. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. ASTROBIOLOGY 2011; 11:969-96. [PMID: 22149750 PMCID: PMC3242637 DOI: 10.1089/ast.2011.0654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/01/2011] [Indexed: 05/04/2023]
Abstract
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.
Collapse
Affiliation(s)
- Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cable ML, Hörst SM, Hodyss R, Beauchamp PM, Smith MA, Willis PA. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chem Rev 2011; 112:1882-909. [DOI: 10.1021/cr200221x] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morgan L. Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Sarah M. Hörst
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Patricia M. Beauchamp
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| | - Mark A. Smith
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
- College of Natural Sciences and Mathematics, University of Houston, Houston, Texas 77004, United States
| | - Peter A. Willis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, United States
| |
Collapse
|
22
|
Ruiz-Bermejo M, Rivas LA, Palacín A, Menor-Salván C, Osuna-Esteban S. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions. ORIGINS LIFE EVOL B 2011; 41:331-45. [PMID: 21161385 DOI: 10.1007/s11084-010-9232-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4). At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.
Collapse
Affiliation(s)
- Marta Ruiz-Bermejo
- Departamento de Evolución Molecular, Centro de Astrobiología [Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA)], Madrid, Spain.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci U S A 2011; 108:5526-31. [PMID: 21422282 DOI: 10.1073/pnas.1019191108] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H(2)S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H(2)S, CH(4), NH(3), and CO(2). A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H(2)S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H(2)S may have played an important role in prebiotic reactions in early solar system environments.
Collapse
|
25
|
Parro V, Fernández-Remolar D, Rodríguez-Manfredi JA, Cruz-Gil P, Rivas LA, Ruiz-Bermejo M, Moreno-Paz M, García-Villadangos M, Gómez-Ortiz D, Blanco-López Y, Menor-Salván C, Prieto-Ballesteros O, Gómez-Elvira J. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars. ASTROBIOLOGY 2011; 11:29-44. [PMID: 21294642 DOI: 10.1089/ast.2010.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5 g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.
Collapse
Affiliation(s)
- Victor Parro
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Menor-Salván C, Ruiz-Bermejo DM, Guzmán MI, Osuna-Esteban S, Veintemillas-Verdaguer S. Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chemistry 2009; 15:4411-8. [PMID: 19288488 DOI: 10.1002/chem.200802656] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Herein, we report the efficient synthesis of RNA bases and functionalized s-triazines from 0.1 M urea solutions in water after subjection to freeze-thaw cycles for three weeks. The icy solution was under a reductive, methane-based atmosphere, which was subjected to spark discharges as an energy source for the first 72 h of the experiment. Analysis of the products indicates the synthesis of the s-triazines cyanuric acid, ammeline, ammelide, and melamine, the pyrimidines cytosine, uracil, and 2,4-diaminopyrimidine, and the purine adenine. An experiment performed as a control at room temperature, with the urea solution in the liquid phase and with the same atmosphere and energy source, led to the synthesis of hydantoins and insoluble tholin, but there was no evidence of the synthesis of pyrimidines or triazines. The synthesis of pyrimidines from urea is possible under a methane/nitrogen atmosphere only at low temperature, in the solid phase. The generation of both pyrimidines and triazines in comparable yields from urea, together with a possible role for triazines as alternative nucleobases, opens new perspectives on the prebiotic chemistry of informational polymers.
Collapse
Affiliation(s)
- César Menor-Salván
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas, Instituto Nacional de Técnica Aeroespacial, Carretera Torrejón-Ajalvir, Km. 4,2, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | | | |
Collapse
|
27
|
Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S. Synthesis of Polycyclic Aromatic Hydrocarbons and Acetylene Polymers in Ice: A Prebiotic Scenario. Chem Biodivers 2008; 5:2729-39. [DOI: 10.1002/cbdv.200890228] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Osuna-Esteban S, Zorzano MP, Menor-Salván C, Ruiz-Bermejo M, Veintemillas-Verdaguer S. Asymmetric chiral growth of micron-size NaClO3 crystals in water aerosols. PHYSICAL REVIEW LETTERS 2008; 100:146102. [PMID: 18518053 DOI: 10.1103/physrevlett.100.146102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Indexed: 05/26/2023]
Abstract
We describe an aerosol-liquid cycle that launches the autocatalytic amplification of any initial imbalance of the order of 10(-7)% (1 ppb) up to total chiral purity in a single step process. Crystal nucleation of NaClO3 is initiated at the aerosol air-water interface where, due to the accumulation of ambient chiral impurities or added hydrophobic chiral aminoacids in tiny concentrations (ppb), the initial levorotatory (l) and dextrorotatory (d) excess will not be produced with equal probability. The enantiomeric yield is then enhanced up to homochirality by recycling the crystallites through a liquid phase. In the absence of added catalysts this process leads to preferential (d) homochiral crystallizations in a ratio of 4:1 which is due to ambient contamination. By adding only 2 ppb of (L) or (D) Phe, we induce a final preferential homochiral crystallization of (d) or (l) handedness, respectively, in a ratio of 2:1.
Collapse
Affiliation(s)
- S Osuna-Esteban
- Centro de Astrobiología CSIC-INTA, Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S. The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. ORIGINS LIFE EVOL B 2007; 37:507-21. [PMID: 17899439 DOI: 10.1007/s11084-007-9107-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 07/14/2007] [Indexed: 10/22/2022]
Abstract
It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe(+2) was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe(+2) and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe(+2), such as FeS, FeCl(2) and FeCO(3), and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe(+2) was the formation of Prussian Blue, Fe(4)[Fe(CN)(6)](3), which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.
Collapse
Affiliation(s)
- M Ruiz-Bermejo
- Consejo de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Centro de Astrobiología, Carretera Torrejón-Ajalvir, Km. 4,2, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|