1
|
Boulesteix D, Buch A, Samson J, Millan M, Jomaa J, Coscia D, Moulay V, McIntosh O, Freissinet C, Stern JC, Szopa C. Influence of pH and salts on DMF-DMA derivatization for future Space Applications. Anal Chim Acta 2023; 1266:341270. [PMID: 37244655 DOI: 10.1016/j.aca.2023.341270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023]
Abstract
For gas chromatography - mass spectrometry (GC-MS) analyses performed in situ, pH and salts (e.g., chlorides, sulfates) may enhance or inhibit the detection of targeted molecules of interest for astrobiology (e.g. amino acids, fatty acids, nucleobases). Obviously, salts influence the ionic strength of the solutions, the pH value, and the salting effect. But the presence of salts may also produce complexes or mask ions in the sample (masking effect on hydroxide ion, ammonia, etc.). For future space missions, wet chemistry will be conducted before GC-MS analyses to detect the full organic content of a sample. The defined organic targets for space GC-MS instrument requirements are generally strongly polar or refractory organic compounds, such as amino acids playing a role in the protein production and metabolism regulations for life on Earth, nucleobases essential for DNA and RNA formation and mutation, and fatty acids that composed most of the eukaryote and prokaryote membranes on Earth and resist to environmental stress long enough to still be observed on Mars or ocean worlds in geological well-preserved records. The wet-chemistry chemical treatment consists of reacting an organic reagent with the sample to extract and volatilize polar or refractory organic molecules (i.e. dimethylformamide dimethyl acetal (DMF-DMA) in this study). DMF-DMA derivatizes functional groups with labile H in organics, without modifying their chiral conformation. The influence of pH and salt concentration of extraterrestrial materials on the DMF-DMA derivatization remains understudied. In this research, we studied the influence of different salts and pHs on the derivatization of organic molecules of astrobiological interest with DMF-DMA, such as amino acids, carboxylic acids, and nucleobases. Results show that salts and pH influence the derivatization yield, and that their effect depend on the nature of the organics and the salts studied. Second, monovalent salts lead to a higher or similar organic recovery compared to divalent salts regardless of pH below 8. However, a pH above 8 inhibits the DMF-DMA derivatization influencing the carboxylic acid function to become an anionic group without labile H. Overall, considering the negative effect of the salts on the detection of organic molecules, future space missions may have to consider a desalting step prior to derivatization and GC-MS analyses.
Collapse
Affiliation(s)
- D Boulesteix
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - A Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - J Samson
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - M Millan
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J Jomaa
- Planetary Environments Laboratory (Code 699), NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA; School of Medicine, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - D Coscia
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - V Moulay
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - O McIntosh
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - C Freissinet
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J C Stern
- Space Science Exploration Division (Code 690), NASA, Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - C Szopa
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| |
Collapse
|
2
|
Prebiotic Synthesis of ATP: A Terrestrial Volcanism-Dependent Pathway. Life (Basel) 2023; 13:life13030731. [PMID: 36983886 PMCID: PMC10053121 DOI: 10.3390/life13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is a multifunctional small molecule, necessary for all modern Earth life, which must be a component of the last universal common ancestor (LUCA). However, the relatively complex structure of ATP causes doubts about its accessibility on prebiotic Earth. In this paper, based on previous studies on the synthesis of ATP components, a plausible prebiotic pathway yielding this key molecule is constructed, which relies on terrestrial volcanism to provide the required materials and suitable conditions.
Collapse
|
3
|
Factors in Protobiomonomer Selection for the Origin of the Standard Genetic Code. Acta Biotheor 2021; 69:745-767. [PMID: 34283307 DOI: 10.1007/s10441-021-09420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Natural selection of specific protobiomonomers during abiogenic development of the prototype genetic code is hindered by the diversity of structural, spatial, and rotational isomers that have identical elemental composition and molecular mass (M), but can vary significantly in their physicochemical characteristics, such as the melting temperature Tm, the Tm:M ratio, and the solubility in water, due to different positions of atoms in the molecule. These parameters differ between cis- and trans-isomers of dicarboxylic acids, spatial monosaccharide isomers, and structural isomers of α-, β-, and γ-amino acids. The stable planar heterocyclic molecules of the major nucleobases comprise four (C, H, N, O) or three (C, H, N) elements and contain a single -C=C bond and two nitrogen atoms in each heterocycle involved in C-N and C=N bonds. They exist as isomeric resonance hybrids of single and double bonds and as a mixture of tautomer forms due to the presence of -C=O and/or -NH2 side groups. They are thermostable, insoluble in water, and exhibit solid-state stability, which is of central importance for DNA molecules as carriers of genetic information. In M-Tm diagrams, proteinogenic amino acids and the corresponding codons are distributed fairly regularly relative to the distinct clusters of purine and pyrimidine bases, reflecting the correspondence between codons and amino acids that was established in different periods of genetic code development. The body of data on the evolution of the genetic code system indicates that the elemental composition and molecular structure of protobiomonomers, and their M, Tm, photostability, and aqueous solubility determined their selection in the emergence of the standard genetic code.
Collapse
|
4
|
LaRowe DE, Carlson HK, Amend JP. The Energetic Potential for Undiscovered Manganese Metabolisms in Nature. Front Microbiol 2021; 12:636145. [PMID: 34177823 PMCID: PMC8220133 DOI: 10.3389/fmicb.2021.636145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are found in nearly every surface and near-surface environment, where they gain energy by catalyzing reactions among a wide variety of chemical compounds. The discovery of new catabolic strategies and microbial habitats can therefore be guided by determining which redox reactions can supply energy under environmentally-relevant conditions. In this study, we have explored the thermodynamic potential of redox reactions involving manganese, one of the most abundant transition metals in the Earth's crust. In particular, we have assessed the Gibbs energies of comproportionation and disproportionation reactions involving Mn2+ and several Mn-bearing oxide and oxyhydroxide minerals containing Mn in the +II, +III, and +IV oxidation states as a function of temperature (0-100°C) and pH (1-13). In addition, we also calculated the energetic potential of Mn2+ oxidation coupled to O2, NO2 -, NO3 -, and FeOOH. Results show that these reactions-none of which, except O2 + Mn2+, are known catabolisms-can provide energy to microorganisms, particularly at higher pH values and temperatures. Comproportionation between Mn2+ and pyrolusite, for example, can yield 10 s of kJ (mol Mn)-1. Disproportionation of Mn3+ can yield more than 100 kJ (mol Mn)-1 at conditions relevant to natural settings such as sediments, ferromanganese nodules and crusts, bioreactors and suboxic portions of the water column. Of the Mn2+ oxidation reactions, the one with nitrite as the electron acceptor is most energy yielding under most combinations of pH and temperature. We posit that several Mn redox reactions represent heretofore unknown microbial metabolisms.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Harold K Carlson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Pearce BKD, Ayers PW, Pudritz RE. CRAHCN-O: A Consistent Reduced Atmospheric Hybrid Chemical Network Oxygen Extension for Hydrogen Cyanide and Formaldehyde Chemistry in CO 2-, N 2-, H 2O-, CH 4-, and H 2-Dominated Atmospheres. J Phys Chem A 2020; 124:8594-8606. [PMID: 32961050 DOI: 10.1021/acs.jpca.0c06804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen cyanide (HCN) and formaldehyde (H2CO) are key precursors to biomolecules such as nucleobases and amino acids in planetary atmospheres. However, many reactions which produce and destroy these species in atmospheres containing CO2 and H2O are still missing from the literature. We use a quantum chemistry approach to find these missing reactions and calculate their rate coefficients using canonical variational transition state theory and Rice-Ramsperger-Kassel-Marcus/master equation theory at the BHandHLYP/aug-cc-pVDZ level of theory. We calculate the rate coefficients for 126 total reactions and validate our calculations by comparing with experimental data in the 39% of available cases. Our calculated rate coefficients are most frequently within a factor of 2 of experimental values and generally always within an order of magnitude of these values. We discover 45 previously unknown reactions and identify 6 from this list that are most likely to dominate H2CO and HCN production and destruction in planetary atmospheres. We highlight 1O + CH3 → H2CO + H as a new key source and H2CO + 1O → HCO + OH as a new key sink, for H2CO in upper planetary atmospheres. In this effort, we develop an oxygen extension to our consistent reduced atmospheric hybrid chemical network (CRAHCN-O), building off our previously developed network for HCN production in N2-, CH4-, and H2-dominated atmospheres (CRAHCN). This extension can be used to simulate both HCN and H2CO production in atmospheres dominated by any of CO2, N2, H2O, CH4, and H2.
Collapse
Affiliation(s)
- Ben K D Pearce
- Origins Institute and Department of Physics and Astronomy, McMaster University, ABB 241, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Paul W Ayers
- Origins Institute and Department of Chemistry and Chemical Biology, McMaster University, ABB 156, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Ralph E Pudritz
- Origins Institute and Department of Physics and Astronomy, McMaster University, ABB 241, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
6
|
Characterization of HCN-Derived Thermal Polymer: Implications for Chemical Evolution. Processes (Basel) 2020. [DOI: 10.3390/pr8080968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hydrogen cyanide (HCN)-derived polymers have been recognized as sources of relevant organic molecules in prebiotic chemistry and material sciences. However, there are considerable gaps in the knowledge regarding the polymeric nature, the physicochemical properties, and the chemical pathways along polymer synthesis. HCN might have played an important role in prebiotic hydrothermal environments; however, only few experiments use cyanide species considering hydrothermal conditions. In this work, we synthesized an HCN-derived thermal polymer simulating an alkaline hydrothermal environment (i.e., HCN (l) 0.15 M, 50 h, 100 °C, pH approximately 10) and characterized its chemical structure, thermal behavior, and the hydrolysis effect. Elemental analysis and infrared spectroscopy suggest an important oxidation degree. The thermal behavior indicates that the polymer is more stable compared to other HCN-derived polymers. The mass spectrometric thermal analysis showed the gradual release of several volatile compounds along different thermal steps. The results suggest a complicate macrostructure formed by amide and hydroxyl groups, which are joined to the main reticular chain with conjugated bonds (C=O, N=O, –O–C=N). The hydrolysis treatment showed the pH conditions for the releasing of organics. The study of the synthesis of HCN-derived thermal polymers under feasible primitive hydrothermal conditions is relevant for considering hydrothermal vents as niches of chemical evolution on early Earth.
Collapse
|
7
|
Baú JPT, Villafañe-Barajas SA, da Costa ACS, Negrón-Mendoza A, Colín-Garcia M, Zaia DAM. Adenine Adsorbed onto Montmorillonite Exposed to Ionizing Radiation: Essays on Prebiotic Chemistry. ASTROBIOLOGY 2020; 20:26-38. [PMID: 31549853 DOI: 10.1089/ast.2018.1909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most adsorption and radiolysis experiments related to prebiotic chemistry studies are performed in distilled water or sodium chloride solutions. However, distilled water and sodium chloride solutions do not represent the composition of the primitive seas of Earth. In this work, an artificial seawater with ion abundances Mg2+ > Ca2+ >> Na+ ≈ K+ and SO42- >> Cl- was used, one that is different from the average composition of seawater today. This artificial seawater is named seawater 4.0 Ga, since it better represents the composition of the major constituents of seawater of primitive Earth. The radiolysis of adenine adsorbed onto montmorillonite was studied. The most important result is that adenine is adsorbed onto montmorillonite, when it is dissolved in artificial seawater 4.0 Ga, and the clay protects adenine against gamma radiation decomposition. However, desorption of adenine from montmorillonite was possible only with 0.10 mol L-1 of KOH. This result indicates that adenine was strongly bonded to montmorillonite. Fourier transform infrared spectroscopy showed that NH2 group and electrostatic interactions, between negatively charged montmorillonite and positively charged adenine, are responsible for adsorption of adenine onto montmorillonite. In addition, X-ray diffractograms showed that adenine enters in the interlayer space of montmorillonite.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| | - Sául A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - María Colín-Garcia
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| |
Collapse
|
8
|
Pearce BKD, Ayers PW, Pudritz RE. A Consistent Reduced Network for HCN Chemistry in Early Earth and Titan Atmospheres: Quantum Calculations of Reaction Rate Coefficients. J Phys Chem A 2019; 123:1861-1873. [DOI: 10.1021/acs.jpca.8b11323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben K. D. Pearce
- Origins Institute and Department of Physics and Astronomy, McMaster University, ABB 241, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Paul W. Ayers
- Origins Institute and Department of Chemistry and Chemical Biology, McMaster University,
ABB 156, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Ralph E. Pudritz
- Origins Institute and Department of Physics and Astronomy, McMaster University, ABB 241, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Ranjan S, Todd ZR, Sutherland JD, Sasselov DD. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. ASTROBIOLOGY 2018; 18:1023-1040. [PMID: 29627997 PMCID: PMC6225604 DOI: 10.1089/ast.2017.1770] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/19/2018] [Indexed: 05/16/2023]
Abstract
A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS-, HSO3-, SO32-) available in surficial aquatic reservoirs on early Earth due to outgassing of SO2 and H2S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO2-derived anions, but not H2S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
10
|
Abstract
The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.
Collapse
|
11
|
Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life's utilization of B vitamins on early Earth. GEOBIOLOGY 2017; 15:3-18. [PMID: 27477998 DOI: 10.1111/gbi.12202] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
Coenzymes are essential across all domains of life. B vitamins (B1 -thiamin, B2 -riboflavin, B3 -niacin, B5 -pantothenate, B6 -pyridoxine, B7 -biotin, and B12 -cobalamin) represent the largest class of coenzymes, which participate in a diverse set of reactions including C1 -rearrangements, DNA repair, electron transfer, and fatty acid synthesis. B vitamin structures range from simple to complex heterocycles, yet, despite this complexity, multiple lines of evidence exist for their ancient origins including abiotic synthesis under putative early Earth conditions and/or meteorite transport. Thus, some of these critical coenzymes likely preceded life on Earth. Some modern organisms can synthesize their own B vitamins de novo while others must either scavenge them from the environment or establish a symbiotic relationship with a B vitamin producer. B vitamin requirements are widespread in some of the most ancient metabolisms including all six carbon fixation pathways, sulfate reduction, sulfur disproportionation, methanogenesis, acetogenesis, and photosynthesis. Understanding modern metabolic B vitamin requirements is critical for understanding the evolutionary conditions of ancient metabolisms as well as the biogeochemical cycling of critical elements such as S, C, and O.
Collapse
Affiliation(s)
- D R Monteverde
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - L Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - C Suffridge
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - S A Sañudo-Wilhelmy
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Pearce BKD, Pudritz RE. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals. ASTROBIOLOGY 2016; 16:853-872. [PMID: 27827540 DOI: 10.1089/ast.2015.1451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world. Key Words: Astrobiology-Cosmochemistry-Meteorites-RNA world-Abiotic organic synthesis. Astrobiology 16, 853-872.
Collapse
Affiliation(s)
- Ben K D Pearce
- Origins Institute and Department of Physics and Astronomy, McMaster University , Hamilton, Canada
| | - Ralph E Pudritz
- Origins Institute and Department of Physics and Astronomy, McMaster University , Hamilton, Canada
| |
Collapse
|
13
|
LaRowe DE, Amend JP. The energetics of anabolism in natural settings. THE ISME JOURNAL 2016; 10:1285-95. [PMID: 26859771 PMCID: PMC5029197 DOI: 10.1038/ismej.2015.227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Abstract
The environmental conditions that describe an ecosystem define the amount of energy available to the resident organisms and the amount of energy required to build biomass. Here, we quantify the amount of energy required to make biomass as a function of temperature, pressure, redox state, the sources of C, N and S, cell mass and the time that an organism requires to double or replace its biomass. Specifically, these energetics are calculated from 0 to 125 °C, 0.1 to 500 MPa and -0.38 to +0.86 V using CO2, acetate or CH4 for C, NO3(-) or NH4(+) for N and SO4(2-) or HS(-) for S. The amounts of energy associated with synthesizing the biomolecules that make up a cell, which varies over 39 kJ (g cell)(-1), are then used to compute energy-based yield coefficients for a vast range of environmental conditions. Taken together, environmental variables and the range of cell sizes leads to a ~4 orders of magnitude difference between the number of microbial cells that can be made from a Joule of Gibbs energy under the most (5.06 × 10(11) cells J(-1)) and least (5.21 × 10(7) cells J(-1)) ideal conditions. When doubling/replacement time is taken into account, the range of anabolism energies can expand even further.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Anizelli PR, Baú JPT, Gomes FP, da Costa ACS, Carneiro CEA, Zaia CTBV, Zaia DAM. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite. ORIGINS LIFE EVOL B 2015; 45:289-306. [PMID: 25754589 DOI: 10.1007/s11084-015-9401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/22/2014] [Indexed: 11/30/2022]
Abstract
There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.
Collapse
Affiliation(s)
- Pedro R Anizelli
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Poskrebyshev GA. Calculating the rate constant for the NH 2 • + CO ⇄ NH2CO• ⇄ H + NHCO reactions and thermodynamic properties of NH2CO•. KINETICS AND CATALYSIS 2015. [DOI: 10.1134/s0023158415030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Czárán T, Könnyű B, Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J Theor Biol 2015; 381:39-54. [PMID: 26087284 DOI: 10.1016/j.jtbi.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Metabolically Coupled Replicator Systems (MCRS) are a family of models implementing a simple, physico-chemically and ecologically feasible scenario for the first steps of chemical evolution towards life. Evolution in an abiotically produced RNA-population sets in as soon as any one of the RNA molecules become autocatalytic by engaging in template directed self-replication from activated monomers, and starts increasing exponentially. Competition for the finite external supply of monomers ignites selection favouring RNA molecules with catalytic activity helping self-replication by any possible means. One way of providing such autocatalytic help is to become a replicase ribozyme. An additional way is through increasing monomer supply by contributing to monomer synthesis from external resources, i.e., by evolving metabolic enzyme activity. Retroevolution may build up an increasingly autotrophic, cooperating community of metabolic ribozymes running an increasingly complicated and ever more efficient metabolism. Maintaining such a cooperating community of metabolic replicators raises two serious ecological problems: one is keeping the system coexistent in spite of the different replicabilities of the cooperating replicators; the other is constraining parasitism, i.e., keeping "cheaters" in check. Surface-bound MCRS provide an automatic solution to both problems: coexistence and parasite resistance are the consequences of assuming the local nature of metabolic interactions. In this review we present an overview of results published in previous articles, showing that these effects are, indeed, robust in different MCRS implementations, by considering different environmental setups and realistic chemical details in a few different models. We argue that the MCRS model framework naturally offers a suitable starting point for the future modelling of membrane evolution and extending the theory to cover the emergence of the first protocell in a self-consistent manner. The coevolution of metabolic, genetic and membrane functions is hypothesized to follow the progressive sequestration scenario, the conceptual blueprint for the earliest steps of protocell evolution.
Collapse
Affiliation(s)
- Tamás Czárán
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Balázs Könnyű
- Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary.
| | - Eörs Szathmáry
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Eötvös Lorand University, Department of Plant Systematics, Ecology and Theoretical Biology, H-1117 Pázmány Péter sétány 1/c, Budapest, Hungary; Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1,1, D-82049, Munich, Germany.
| |
Collapse
|
17
|
Koziol L, Goldman N. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/803/2/91] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
|
19
|
Amend JP, LaRowe DE, McCollom TM, Shock EL. The energetics of organic synthesis inside and outside the cell. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120255. [PMID: 23754809 PMCID: PMC3685458 DOI: 10.1098/rstb.2012.0255] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.
Collapse
Affiliation(s)
- Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
We present results of prebiotic organic synthesis in shock compressed mixtures of simple ices from quantum molecular dynamics (MD) simulations extended to close to equilibrium time scales. Given the likelihood of an inhospitable prebiotic atmosphere on early Earth, it is possible that impact processes of comets or other icy bodies were a source of prebiotic chemical compounds on the primitive planet. We observe that moderate shock pressures and temperatures within a CO2-rich icy mixture (36 GPa and 2800 K) produce a number of nitrogen containing heterocycles, which dissociate to form functionalized aromatic hydrocarbons upon expansion and cooling to ambient conditions. In contrast, higher shock conditions (48-60 GPa, 3700-4800 K) resulted in the synthesis of long carbon-chain molecules, CH4, and formaldehyde. All shock compression simulations at these conditions have produced significant quantities of simple C-N bonded compounds such as HCN, HNC, and HNCO upon expansion and cooling to ambient conditions. Our results elucidate a mechanism for impact synthesis of prebiotic molecules at realistic impact conditions that is independent of external constraints such as the presence of a catalyst, illuminating UV radiation, or pre-existing conditions on a planet.
Collapse
Affiliation(s)
- Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | | |
Collapse
|
21
|
Novel molecular fossils of bacteria: insights into hydrothermal origin of life. J Theor Biol 2012; 310:249-56. [PMID: 22796638 DOI: 10.1016/j.jtbi.2012.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/21/2022]
Abstract
Hydrothermal vents, in particular, alkaline submarine vents, are potential systems for the origin of life. Early hydrothermal vents may have imprinted on biochemical processes and housekeeping proteins of life and have hallmarked key molecules. This essay introduces new information to this discussion by focusing on newly identified sulfur-modified DNA and a heretofore ignored anhydro bond of the cell wall peptidoglycan in bacteria. It is suggested that they are novel molecular fossils that are relevant to the settings of alkaline submarine vents and harbor clues of early life. As DNA and the cell wall are bound up with genetic information and the integrity of cell, respectively, these two molecular fossils may provide insights into hydrothermal origin of life from a new angle.
Collapse
|
22
|
Holm NG. The significance of Mg in prebiotic geochemistry. GEOBIOLOGY 2012; 10:269-79. [PMID: 22429303 PMCID: PMC3510310 DOI: 10.1111/j.1472-4669.2012.00323.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/10/2012] [Indexed: 05/20/2023]
Abstract
Magnesium plays a special role in biochemistry because of its ability to coordinate six oxygen atoms efficiently in its first coordination shell. Such oxygen atoms may be part of one or two charged oxyanions, which means that Mg²⁺ can, for instance, tie together two different phosphate groups that are located at distance from each other in a macromolecule, and in this way be responsible for the folding of molecules like RNA. This property of Mg²⁺ also helps the stabilization of diphosphate and triphosphate groups of nucleotides, as well as promoting the condensation of orthophosphate to oligophosphates, like pyrophosphate and trimetaphosphate. Borates, on the other hand, are known to promote the formation of nucleobases and carbohydrates, ribose in particular, which is yet another constituent of nucleotides. The oldest borate minerals that we find on Earth today are magnesium borates. Dissolved borate stabilizes pentose sugars by forming complexes with cis-hydroxyl groups. In the furanose form of ribose, the preferential binding occurs to the 2 and 3 carbon, leaving the 5 carbon free for phosphorylation. The central role of Mg²⁺ in the function of ribozymes and its 'archaic' position in ribosomes, and the fact that magnesium generally has coordination properties different from other cations, suggests that the inorganic chemistry of magnesium had a key position in the first chemical processes leading to the origin and early evolution of life.
Collapse
Affiliation(s)
- N G Holm
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
23
|
Kurihara H, Takano Y, Kaneko T, Obayashi Y, Kobayashi K. Stability of Amino Acids and Related Compounds in Simulated Submarine Hydrothermal Systems. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Takeo Kaneko
- Faculty of Engineering, Yokohama National University
| | | | | |
Collapse
|
24
|
Kurihara H, Yabuta H, Kaneko T, Obayashi Y, Takano Y, Kobayashi K. Characterization of Organic Aggregates Formed by Heating Products of Simulated Primitive Earth Atmosphere Experiments. CHEM LETT 2012. [DOI: 10.1246/cl.2012.441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Hikaru Yabuta
- Department of Earth and Space Science, Osaka University
| | - Takeo Kaneko
- Graduate School of Engineering, Yokohama National University
| | - Yumiko Obayashi
- Graduate School of Engineering, Yokohama National University
| | - Yoshinori Takano
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology
| | | |
Collapse
|
25
|
Baú JPT, Carneiro CEA, de Souza Junior IG, de Souza CMD, da Costa ACS, di Mauro E, Zaia CTBV, Coronas J, Casado C, de Santana H, Zaia DAM. Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. ORIGINS LIFE EVOL B 2012; 42:19-29. [PMID: 22011879 DOI: 10.1007/s11084-011-9246-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022]
Abstract
The interactions of adenine and thymine with and adsorption on zeolites were studied using different techniques. There were two main findings. First, as shown by X-ray diffractometry, thymine increased the decomposition of the zeolites (Y, ZSM-5) while adenine prevented it. Second, zeolite Y adsorbed almost the same amount of adenine and thymine, thus both nucleic acid bases could be protected from hydrolysis and UV radiation and could be available for molecular evolution. The X-ray diffractometry and SEM showed that artificial seawater almost dissolved zeolite A. The adsorption of adenine on ZSM-5 zeolite was higher than that of thymine (Student-Newman-Keuls test-SNK p<0.05). Adenine was also more greatly adsorbed on ZSM-5 zeolite, when compared to other zeolites (SNK p<0.05). However the adsorption of thymine on different zeolites was not statistically different (SNK p>0.05). The adsorption of adenine and thymine on zeolites did not depend on pore size or Si/Al ratio and it was not explained only by electrostatic forces; rather van der Waals interactions should also be considered.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang T, Bowie JH. Can cytosine, thymine and uracil be formed in interstellar regions? A theoretical study. Org Biomol Chem 2012; 10:652-62. [DOI: 10.1039/c1ob06352a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Carneiro CEA, Berndt G, de Souza Junior IG, de Souza CMD, Paesano A, da Costa ACS, di Mauro E, de Santana H, Zaia CTBV, Zaia DAM. Adsorption of adenine, cytosine, thymine, and uracil on sulfide-modified montmorillonite: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. ORIGINS LIFE EVOL B 2011; 41:453-68. [PMID: 21717172 DOI: 10.1007/s11084-011-9244-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe(2+) to Fe(3+), thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine ≈ cytosine > thymine > uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na(2)S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH(+) or NH (2) (+) groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g ≈ 2 increased probably because the oxidation of Fe(2+) to Fe(3+) by nucleic acid bases and intensity of the line g = 4.1 increased due to the interaction of Fe(3+) with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe(2+) doublet area of the clays due to the reaction of nucleic acid bases with Fe(2+).
Collapse
Affiliation(s)
- Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 2010; 32:271-80. [PMID: 20108228 DOI: 10.1002/bies.200900131] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite thermodynamic, bioenergetic and phylogenetic failings, the 81-year-old concept of primordial soup remains central to mainstream thinking on the origin of life. But soup is homogeneous in pH and redox potential, and so has no capacity for energy coupling by chemiosmosis. Thermodynamic constraints make chemiosmosis strictly necessary for carbon and energy metabolism in all free-living chemotrophs, and presumably the first free-living cells too. Proton gradients form naturally at alkaline hydrothermal vents and are viewed as central to the origin of life. Here we consider how the earliest cells might have harnessed a geochemically created proton-motive force and then learned to make their own, a transition that was necessary for their escape from the vents. Synthesis of ATP by chemiosmosis today involves generation of an ion gradient by means of vectorial electron transfer from a donor to an acceptor. We argue that the first donor was hydrogen and the first acceptor CO2.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
29
|
Holm NG, Neubeck A. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. GEOCHEMICAL TRANSACTIONS 2009; 10:9. [PMID: 19849830 PMCID: PMC2770064 DOI: 10.1186/1467-4866-10-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.
Collapse
Affiliation(s)
- Nils G Holm
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Anna Neubeck
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Organic analysis of peridotite rocks from the Ashadze and Logatchev hydrothermal sites. Int J Mol Sci 2009; 10:2986-2998. [PMID: 19742180 PMCID: PMC2738907 DOI: 10.3390/ijms10072986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/27/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022] Open
Abstract
This article presents an experimental analysis of the organic content of two serpentinized peridotite rocks of the terrestrial upper mantle. The samples have been dredged on the floor of the Ashadze and Logatchev hydrothermal sites on the Mid-Atlantic Ridge. In this preliminary analysis, amino acids and long chain n-alkanes are identified. They are most probably of biological/microbial origin. Some peaks remain unidentified.
Collapse
|
31
|
Precambrian lunar volcanic protolife. Int J Mol Sci 2009; 10:2681-2721. [PMID: 19582224 PMCID: PMC2705511 DOI: 10.3390/ijms10062681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/20/2022] Open
Abstract
Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated.
Collapse
|