1
|
Jeong S, Kang J, Cho M, An J, Yoon HO. New insights into surface behavior of dimethylated arsenicals on montmorillonite using X-ray absorption spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158531. [PMID: 36063923 DOI: 10.1016/j.scitotenv.2022.158531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Although recent studies have revealed the occurrence of dimethylated arsenicals, little is known about their behavior in environment. This study investigates the adsorption behavior of dimethylarsinic acid (DMAV), dimethyldithioarsinic acid (DMDTAV), and dimethylmonothioarsinic acid (DMMTAV) on montmorillonite. Complicated transformations among arsenicals under normal environmental conditions were also considered. Our results clearly demonstrate that DMDTAV was oxidized to DMMTAV, which was relatively stable but partially transformed to DMAV when exposed to air during adsorption. The transformed DMAV exhibited high adsorption affinities for montmorillonite, while DMMTAV and DMDTAV were not appreciably retained by montmorillonite for 48 h. This is the first study to provide insights into DMDTAV oxidation under environmental conditions. X-ray absorption near edge structure and extended X-ray absorption fine structure studies confirmed that most of the adsorbed arsenicals on montmorillonite were DMAV. The significantly different bonding characteristics of each adsorbed DMAV provide direct evidence for the transformation of DMAV from DMDTAV and DMMTAV. Our study suggests the importance of incorporating the DMMTAV in the realistic risk management for soil environments because it is highly toxic, easily transformed from DMDTAV, and stable in the environment.
Collapse
Affiliation(s)
- Seulki Jeong
- Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea
| | - Jinback Kang
- Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea
| | - Minkyu Cho
- Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea
| | - Jinsung An
- Department of Civil & Environmental Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hye-On Yoon
- Seoul Center, Korea Basic Science Institute, 6-7, Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea.
| |
Collapse
|
2
|
Sit I, Quirk E, Hettiarachchi E, Grassian VH. Differential Surface Interactions and Surface Templating of Nucleotides (dGMP, dCMP, dAMP, and dTMP) on Oxide Particle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15038-15049. [PMID: 36445255 PMCID: PMC9753757 DOI: 10.1021/acs.langmuir.2c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The fate of biomolecules in the environment depends in part on understanding the surface chemistry occurring at the biological-geochemical (bio-geo) interface. Little is known about how environmental DNA (eDNA) or smaller components, like nucleotides and oligonucleotides, persist in aquatic environments and the role of surface interactions. This study aims to probe surface interactions and adsorption behavior of nucleotides on oxide surfaces. We have investigated the interactions of individual nucleotides (dGMP, dCMP, dAMP, and dTMP) on TiO2 particle surfaces as a function of pH and in the presence of complementary and noncomplementary base pairs. Using attenuated total reflectance-Fourier transform infrared spectroscopy, there is an increased number of adsorbed nucleotides at lower pH with a preferential interaction of the phosphate group with the oxide surface. Additionally, differential adsorption behavior is seen where purine nucleotides are preferentially adsorbed, with higher surface saturation coverage, over their pyrimidine derivatives. These differences may be a result of intermolecular interactions between coadsorbed nucleotides. When the TiO2 surface was exposed to two-component solutions of nucleotides, there was preferential adsorption of dGMP compared to dCMP and dTMP, and dAMP compared to dTMP and dCMP. Complementary nucleotide base pairs showed hydrogen-bond interactions between a strongly adsorbed purine nucleotide layer and a weaker interacting hydrogen-bonded pyrimidine second layer. Noncomplementary base pairs did not form a second layer. These results highlight several important findings: (i) there is differential adsorption of nucleotides; (ii) complementary coadsorbed nucleotides show base pairing with a second layer, and the stability depends on the strength of the hydrogen bonding interactions and; (iii) the first layer coverage strongly depends on pH. Overall, the importance of surface interactions in the adsorption of nucleotides and the templating of specific interactions between nucleotides are discussed.
Collapse
Affiliation(s)
- Izaac Sit
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleanor Quirk
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eshani Hettiarachchi
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Pereira RC, da Costa ACS, Ivashita FF, Paesano A, Zaia DAM. Interaction between glyphosate and montmorillonite in the presence of artificial seawater. Heliyon 2020; 6:e03532. [PMID: 32181399 PMCID: PMC7062928 DOI: 10.1016/j.heliyon.2020.e03532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Glyphosate (N- (phosphonomethyl) glycine) is one of the most widely used herbicides in the world. In the literature, there are several studies describing the interaction between glyphosate and clay minerals. However, there is a lack of data of this interaction in marine environments. In this research, we examined the adsorption of glyphosate onto montmorillonite in the presence of artificial seawater. Mössbauer data showed that the interaction of the phosphonate group of glyphosate with Fe2+ of montmorillonite prevents its oxidation to Fe3+. X-ray diffractograms showed that glyphosate adsorption takes place only onto the montmorillonite surface and not in its interlayers. Infrared spectroscopy data demonstrate that the interaction between glyphosate and montmorillonite could be through the amino group. FT-IR spectra of aqueous solutions of salts of seawater showed that Ca2+ interacts with glyphosate of the phosphonate group, thus causing an increase in its adsorption onto montmorillonite. However, glyphosate dissolved in 0.50 mol L−1 NaCl and 0.034 mol L-1MgCl2 solutions showed the lowest adsorption onto montmorillonite. In addition, the adsorption of glyphosate onto montmorillonite decreased when the NaCl concentration increased. The results fitted the Sips isotherm model, probably because the Ca2+ interacts with glyphosate, making the adsorption process more homogeneous. Thus, n values for Freundlich and Sips isotherm models decreased with an increase in ionic strength. Glyphosate and ions of artificial seawater increased the pHpzc of montmorillonite.
Collapse
Affiliation(s)
- Rodrigo C Pereira
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | - Antonio C S da Costa
- Departamento de Agronomia-CCA, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Flávio F Ivashita
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Andrea Paesano
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| |
Collapse
|
5
|
Baú JPT, Villafañe-Barajas SA, da Costa ACS, Negrón-Mendoza A, Colín-Garcia M, Zaia DAM. Adenine Adsorbed onto Montmorillonite Exposed to Ionizing Radiation: Essays on Prebiotic Chemistry. ASTROBIOLOGY 2020; 20:26-38. [PMID: 31549853 DOI: 10.1089/ast.2018.1909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most adsorption and radiolysis experiments related to prebiotic chemistry studies are performed in distilled water or sodium chloride solutions. However, distilled water and sodium chloride solutions do not represent the composition of the primitive seas of Earth. In this work, an artificial seawater with ion abundances Mg2+ > Ca2+ >> Na+ ≈ K+ and SO42- >> Cl- was used, one that is different from the average composition of seawater today. This artificial seawater is named seawater 4.0 Ga, since it better represents the composition of the major constituents of seawater of primitive Earth. The radiolysis of adenine adsorbed onto montmorillonite was studied. The most important result is that adenine is adsorbed onto montmorillonite, when it is dissolved in artificial seawater 4.0 Ga, and the clay protects adenine against gamma radiation decomposition. However, desorption of adenine from montmorillonite was possible only with 0.10 mol L-1 of KOH. This result indicates that adenine was strongly bonded to montmorillonite. Fourier transform infrared spectroscopy showed that NH2 group and electrostatic interactions, between negatively charged montmorillonite and positively charged adenine, are responsible for adsorption of adenine onto montmorillonite. In addition, X-ray diffractograms showed that adenine enters in the interlayer space of montmorillonite.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| | - Sául A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - María Colín-Garcia
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| |
Collapse
|
6
|
Afshari T, Mohsennia M. Structural and electronic properties of adsorbed nucleobases on pristine and Al-doped coronene in absence and presence of external electric fields: a computational study. Struct Chem 2019. [DOI: 10.1007/s11224-019-01455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Villafañe-Barajas SA, Baú JPT, Colín-García M, Negrón-Mendoza A, Heredia-Barbero A, Pi-Puig T, Zaia DAM. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment. ORIGINS LIFE EVOL B 2018; 48:181-200. [PMID: 29392543 DOI: 10.1007/s11084-018-9554-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Collapse
Affiliation(s)
- Saúl A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México.
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
8
|
Saikia N, Johnson F, Waters K, Pandey R. Dynamics of self-assembled cytosine nucleobases on graphene. NANOTECHNOLOGY 2018; 29:195601. [PMID: 29461252 DOI: 10.1088/1361-6528/aab0ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.
Collapse
|
9
|
Iqubal MA, Sharma R, Kamaluddin K. Surface interaction of ribonucleic acid constituents with spinel ferrite nanoparticles: a prebiotic chemistry experiment. RSC Adv 2016. [DOI: 10.1039/c6ra12247g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
A prebiotic chemistry experiment involving interaction between ribonucleotides and spinel ferrite nanoparticles has been carried out.
Collapse
|
10
|
Canhisares-Filho JE, Carneiro CEA, de Santana H, Urbano A, da Costa ACS, Zaia CTBV, Zaia DAM. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry. ASTROBIOLOGY 2015; 15:728-738. [PMID: 26393397 DOI: 10.1089/ast.2015.1309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine >> uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.
Collapse
Affiliation(s)
- José E Canhisares-Filho
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Cristine E A Carneiro
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Henrique de Santana
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Alexandre Urbano
- 2 Departamento de Física-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Antonio C S da Costa
- 3 Departamento de Agronomia-CCA, Universidade Estadual de Maringá , Maringá-PR, Brazil
| | - Cássia T B V Zaia
- 4 Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Dimas A M Zaia
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| |
Collapse
|
11
|
Anizelli PR, Baú JPT, Gomes FP, da Costa ACS, Carneiro CEA, Zaia CTBV, Zaia DAM. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite. ORIGINS LIFE EVOL B 2015; 45:289-306. [PMID: 25754589 DOI: 10.1007/s11084-015-9401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/22/2014] [Indexed: 11/30/2022]
Abstract
There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.
Collapse
Affiliation(s)
- Pedro R Anizelli
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Block KA, Trusiak A, Katz A, Alimova A, Wei H, Gottlieb P, Steiner JC. Exfoliation and intercalation of montmorillonite by small peptides. APPLIED CLAY SCIENCE 2015; 107:173-181. [PMID: 25825549 PMCID: PMC4375959 DOI: 10.1016/j.clay.2015.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at approximately 16% by weight.
Collapse
Affiliation(s)
- Karin A. Block
- Department of Earth and Atmospheric Sciences, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Adrianna Trusiak
- Department of Earth and Atmospheric Sciences, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Al Katz
- Department of Physics, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Alexandra Alimova
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Hui Wei
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Paul Gottlieb
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave, New York, NY, 10031
| | - Jeffrey C. Steiner
- Department of Earth and Atmospheric Sciences, The City College of New York, 160 Convent Ave, New York, NY, 10031
| |
Collapse
|
13
|
Georgelin T, Jaber M, Fournier F, Laurent G, Costa-Torro F, Maurel MC, Lambert JF. Stabilization of ribofuranose by a mineral surface. Carbohydr Res 2015; 402:241-4. [DOI: 10.1016/j.carres.2014.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
|
14
|
Yang HW, Lee AW, Huang CH, Chen JK. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds. SOFT MATTER 2014; 10:8330-8340. [PMID: 25196131 DOI: 10.1039/c4sm01496k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics.
Collapse
Affiliation(s)
- Hsiu-Wen Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei, 106, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
15
|
Anizelli PR, Baú JPT, Nabeshima HS, da Costa MF, de Santana H, Zaia DAM. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 126:184-196. [PMID: 24607468 DOI: 10.1016/j.saa.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital.
Collapse
Affiliation(s)
- Pedro R Anizelli
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - João P T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Henrique S Nabeshima
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Marcello F da Costa
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Henrique de Santana
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
16
|
Ding N, Chen X, Wu CML, Li H. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: hydrogen bonding versus stacking. Phys Chem Chem Phys 2013; 15:10767-76. [PMID: 23689542 DOI: 10.1039/c3cp50912e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The adsorption of hydrogen-bonded and stacked nucleobase pairs on the hexagonal boron nitride (h-BN) surface was studied by density functional theory and molecular dynamics methods. Eight types of nucleobase pairs (i.e., GG, AA, TT, CC, UU, AT, GC, and AU) were chosen as the adsorbates. The adsorption configurations, interaction energies, and electronic properties of the nucleobase pair on the h-BN surface were obtained and compared. The density of states analysis result shows that both the hydrogen-bonded and stacked nucleobase pairs were physisorbed on h-BN with minimal charge transfer. The hydrogen-bonded base pairs lying on the h-BN surface are significantly more stable than the stacked forms in both the gas and water phase. The molecular dynamics simulation result indicates that h-BN possessed high sensitivity for the nucleobases and the h-BN surface adsorption could revert the base pair interaction from stacking back to hydrogen bonding in aqueous environment. The h-BN surface could immobilize the nucleobases on its surface, which suggests the use of h-BN has good potential in DNA/RNA detection biosensors and self-assembly nanodevices.
Collapse
Affiliation(s)
- Ning Ding
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
17
|
|
18
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
19
|
A novel method for RNA extraction from Andosols using casein and its application to amoA gene expression study in soil. Appl Microbiol Biotechnol 2012; 96:793-802. [DOI: 10.1007/s00253-012-4342-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/27/2022]
|
20
|
Baú JPT, Carneiro CEA, de Souza Junior IG, de Souza CMD, da Costa ACS, di Mauro E, Zaia CTBV, Coronas J, Casado C, de Santana H, Zaia DAM. Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. ORIGINS LIFE EVOL B 2012; 42:19-29. [PMID: 22011879 DOI: 10.1007/s11084-011-9246-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022]
Abstract
The interactions of adenine and thymine with and adsorption on zeolites were studied using different techniques. There were two main findings. First, as shown by X-ray diffractometry, thymine increased the decomposition of the zeolites (Y, ZSM-5) while adenine prevented it. Second, zeolite Y adsorbed almost the same amount of adenine and thymine, thus both nucleic acid bases could be protected from hydrolysis and UV radiation and could be available for molecular evolution. The X-ray diffractometry and SEM showed that artificial seawater almost dissolved zeolite A. The adsorption of adenine on ZSM-5 zeolite was higher than that of thymine (Student-Newman-Keuls test-SNK p<0.05). Adenine was also more greatly adsorbed on ZSM-5 zeolite, when compared to other zeolites (SNK p<0.05). However the adsorption of thymine on different zeolites was not statistically different (SNK p>0.05). The adsorption of adenine and thymine on zeolites did not depend on pore size or Si/Al ratio and it was not explained only by electrostatic forces; rather van der Waals interactions should also be considered.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|