1
|
Prosdocimi F, de Farias ST. Major evolutionary transitions before cells: A journey from molecules to organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:11-24. [PMID: 38971326 DOI: 10.1016/j.pbiomolbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Basing on logical assumptions and necessary steps of complexification along biological evolution, we propose here an evolutionary path from molecules to cells presenting four ages and three major transitions. At the first age, the basic biomolecules were formed and become abundant. The first transition happened with the event of a chemical symbiosis between nucleic acids and peptides worlds, which marked the emergence of both life and the process of organic encoding. FUCA, the first living process, was composed of self-replicating RNAs linked to amino acids and capable to catalyze their binding. The second transition, from the age of FUCA to the age of progenotes, involved the duplication and recombination of proto-genomes, leading to specialization in protein production and the exploration of protein to metabolite interactions in the prebiotic soup. Enzymes and metabolic pathways were incorporated into biology from protobiotic reactions that occurred without chemical catalysts, step by step. Then, the fourth age brought origin of organisms and lineages, occurring when specific proteins capable to stackle together facilitated the formation of peptidic capsids. LUCA was constituted as a progenote capable to operate the basic metabolic functions of a cell, but still unable to interact with lipid molecules. We present evidence that the evolution of lipid interaction pathways occurred at least twice, with the development of bacterial-like and archaeal-like membranes. Also, data in literature suggest at least two paths for the emergence of DNA biosynthesis, allowing the stabilization of early life strategies in viruses, archaeas and bacterias. Two billion years later, the eukaryotes arouse, and after 1,5 billion years of evolution, they finally learn how to evolve multicellularity via tissue specialization.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
2
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
3
|
Fustin JM. Methyl Metabolism and the Clock: An Ancient Story With New Perspectives. J Biol Rhythms 2022; 37:235-248. [PMID: 35382619 PMCID: PMC9160962 DOI: 10.1177/07487304221083507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation, that is, the transfer or synthesis of a –CH3 group onto a target molecule, is a pervasive biochemical modification found in organisms from bacteria to humans. In mammals, a complex metabolic pathway powered by the essential nutrients vitamin B9 and B12, methionine and choline, synthesizes S-adenosylmethionine, the methyl donor in the methylation of nucleic acids, proteins, fatty acids, and small molecules by over 200 substrate-specific methyltransferases described so far in humans. Methylations not only play a key role in scenarios for the origin and evolution of life, but they remain essential for the development and physiology of organisms alive today, and methylation deficiencies contribute to the etiology of many pathologies. The methylation of histones and DNA is important for circadian rhythms in many organisms, and global inhibition of methyl metabolism similarly affects biological rhythms in prokaryotes and eukaryotes. These observations, together with various pieces of evidence scattered in the literature on circadian gene expression and metabolism, indicate a close mutual interdependence between biological rhythms and methyl metabolism that may originate from prebiotic chemistry. This perspective first proposes an abiogenetic scenario for rhythmic methylations and then outlines mammalian methyl metabolism, before reanalyzing previously published data to draw a tentative map of its profound connections with the circadian clock.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Centre for Biological Timing, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Fulvio D, Potapov A, He J, Henning T. Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life (Basel) 2021; 11:life11060568. [PMID: 34204233 PMCID: PMC8235774 DOI: 10.3390/life11060568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
A deep understanding of the origin of life requires the physical, chemical, and biological study of prebiotic systems and the comprehension of the mechanisms underlying their evolutionary steps. In this context, great attention is paid to the class of interstellar molecules known as "Complex Organic Molecules" (COMs), considered as possible precursors of prebiotic species. Although COMs have already been detected in different astrophysical environments (such as interstellar clouds, protostars, and protoplanetary disks) and in comets, the physical-chemical mechanisms underlying their formation are not yet fully understood. In this framework, a unique contribution comes from laboratory experiments specifically designed to mimic the conditions found in space. We present a review of experimental studies on the formation and evolution of COMs in the solid state, i.e., within ices of astrophysical interest, devoting special attention to the in situ detection and analysis techniques commonly used in laboratory astrochemistry. We discuss their main strengths and weaknesses and provide a perspective view on novel techniques, which may help in overcoming the current experimental challenges.
Collapse
Affiliation(s)
- Daniele Fulvio
- Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
- Correspondence:
| | - Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany;
| | - Jiao He
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
| | - Thomas Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
| |
Collapse
|
5
|
Varas LR, Fantuzzi F, Coutinho LH, Bernini RB, Nascimento MAC, de Souza GGB. Are disulfide bonds resilient to double ionization? Insights from coincidence spectroscopy and ab initio calculations. RSC Adv 2020; 10:35039-35048. [PMID: 35515687 PMCID: PMC9056841 DOI: 10.1039/d0ra05979j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Disulfide bonds (-S-S-) are commonly present in biomolecules and have also been detected in astrophysical environments. In this work, the stability of the disulfide bond towards double ionization is investigated using quantum chemical calculations and photoelectron photoion photoion coincidence (PEPIPICO) spectroscopy measurements on the prototype dimethyl disulfide (CH3SSCH3, DMDS) molecule. The experiments were performed using high energy synchrotron radiation photons before (2465.0 eV) and at (2470.9 eV) the first sigma resonance around the S 1s edge. We applied the multivariate normal distribution analysis to identify the most plausible ionic fragmentation mechanisms from the doubly ionized DMDS. By mapping the minimum energy structures on the dicationic C2H6S2 2+ potential energy surface, we show that disulfide bonds are only present in high-lying isomers, in contrast to their analogous neutral systems. Our results also indicate that the number of fragment ions containing a disulfide bond for both photon energies is negligible. Taken together, our results reveal that the disulfide bond is severely damaged as a consequence of sulfur core-shell ionization processes, due to the lowering of its thermodynamic stability in multiply-charged systems.
Collapse
Affiliation(s)
- Lautaro R Varas
- Escuela de Ingeniería Química, Universidad de Costa Rica, Ciudad de la Investigación, Facultad de Ingeniería 4o piso 11501-2060 San José Costa Rica
| | - Felipe Fantuzzi
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão 21949-909, Rio de Janeiro RJ Brazil
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Lúcia Helena Coutinho
- Instituto de Física, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149 21941-972 Rio de Janeiro Brazil
| | - Rafael B Bernini
- Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ) Duque de Caxias 25050-100 RJ Brazil
| | - Marco Antonio Chaer Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão 21949-909, Rio de Janeiro RJ Brazil
| | - G G B de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão 21949-909, Rio de Janeiro RJ Brazil
| |
Collapse
|
6
|
Riffet V, Frison G, Bouchoux G. Quantum-Chemical Modeling of the First Steps of the Strecker Synthesis: From the Gas-Phase to Water Solvation. J Phys Chem A 2018; 122:1643-1657. [DOI: 10.1021/acs.jpca.7b10534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Riffet
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - G. Frison
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| | - G. Bouchoux
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
| |
Collapse
|
7
|
Bai X, Liu Z, Ye K, Wang Y, Zhang X, Yue H, Tian G, Feng S. The oxidation of the alpha-carbon of amines in hydrothermal condition: an alternative synthetic route of compounds containing amide bond. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Bada JL. New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments. Chem Soc Rev 2013; 42:2186-96. [PMID: 23340907 DOI: 10.1039/c3cs35433d] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1953 was a banner year for biological chemistry: The double helix structure of DNA was published by Watson and Crick, Sanger's group announced the first amino acid sequence of a protein (insulin) and the synthesis of key biomolecules using simulated primordial Earth conditions has demonstrated by Miller. Miller's studies in particular transformed the study of the origin of life into a respectable field of inquiry and established the basis of prebiotic chemistry, a field of research that investigates how the components of life as we know it can be formed in a variety of cosmogeochemical environments. In this review, I cover the continued advances in prebiotic syntheses that Miller's pioneering work has inspired. The main focus is on recent state-of-the-art analyses carried out on archived samples of Miller's original experiments, some of which had never before been analyzed, discovered in his laboratory material just before his death in May 2007. One experiment utilized a reducing gas mixture and an apparatus configuration (referred to here as the "volcanic" apparatus) that could represent a water-rich volcanic eruption accompanied by lightning. Another included H(2)S as a component of the reducing gas mixture. Compared to the limited number of amino acids Miller identified, these new analyses have found that over 40 different amino acids and amines were synthesized, demonstrating the potential robust formation of important biologic compounds under possible cosmogeochemical conditions. These experiments are suggested to simulate long-lived volcanic island arc systems, an environment that could have provided a stable environment for some of the processes thought to be involved in chemical evolution and the origin of life. Some of the alternatives to the Miller-based prebiotic synthesis and the "primordial soup" paradigm are evaluated in the context of their relevance under plausible planetary conditions.
Collapse
Affiliation(s)
- Jeffrey L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA.
| |
Collapse
|
9
|
Scharf DH, Chankhamjon P, Scherlach K, Heinekamp T, Roth M, Brakhage AA, Hertweck C. Epidithiol Formation by an Unprecedented Twin Carbon-Sulfur Lyase in the Gliotoxin Pathway. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Scharf DH, Chankhamjon P, Scherlach K, Heinekamp T, Roth M, Brakhage AA, Hertweck C. Epidithiol Formation by an Unprecedented Twin Carbon-Sulfur Lyase in the Gliotoxin Pathway. Angew Chem Int Ed Engl 2012; 51:10064-8. [PMID: 22936680 DOI: 10.1002/anie.201205041] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel H Scharf
- Dept. of Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|