1
|
Bin Jardan YA, Ahad A, Raish M, Al-Mohizea AM, Al-Jenoobi FI. Microwave-Assisted Formation of Ternary Inclusion Complex of Pterostilbene. Pharmaceuticals (Basel) 2023; 16:1641. [PMID: 38139768 PMCID: PMC10747933 DOI: 10.3390/ph16121641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Pterostilbene (PTS) is a naturally occurring phytoalexin. PTS displays limited water solubility, which consequently results in its diminished oral bioavailability. Therefore, a ternary inclusion complex (TIC) of PTS with β-cyclodextrin (βCD) in the presence of ternary substance Pluronic® F-127 (PLF) was prepared using microwave technology. The PTS-TIC was characterized by dissolution performance. Further, the prepared TIC was characterized by DSC, FTIR, NMR, XRD, and SEM analysis. Additionally, the antioxidant activity of PTS and PTS-TIC was also evaluated. Phase-solubility studies revealed that PTS's solubility in water was increased by 6.72 times when βCD/PLF was present. In comparison with PTS, prepared PTS-TIC produced a considerable improvement in PTS release. After 1 h, 74.03 ± 4.47% of PTS was released from PTS-TIC. Outcomes of DSC, FTIR, NMR, XRD, and SEM analysis revealed that the PTS was enclosed in the βCD cavity. In terms of antioxidant properties, the PTS-TIC formulation demonstrated superior activity compared to PTS, possibly attributed to the improved solubility of PTS resulting from the formation of TIC using microwave technology. It was concluded that microwave technology proved to be an extremely beneficial means of interacting PTS with βCD. In addition to increasing the solubility of PTS, the findings are also expected to improve its bioavailability by increasing its solubility. As a result, this study could provide insight into potential methods for enhancing the solubility of polyphenolic substances like PTS.
Collapse
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
2
|
Javanbakht S, Darvishi S, Dorchei F, Hosseini-Ghalehno M, Dehghani M, Pooresmaeil M, Suzuki Y, Ul Ain Q, Ruiz Rubio L, Shaabani A, Hayashita T, Namazi H, Heydari A. Cyclodextrin Host-Guest Recognition in Glucose-Monitoring Sensors. ACS OMEGA 2023; 8:33202-33228. [PMID: 37744789 PMCID: PMC10515351 DOI: 10.1021/acsomega.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Sima Darvishi
- Faculty
of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | - Faeze Dorchei
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | | | - Marjan Dehghani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Malihe Pooresmaeil
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Qurat Ul Ain
- Department
of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad H-12, Pakistan
| | - Leire Ruiz Rubio
- Macromolecular
Chemistry Group (LQM), Department of Physical Chemistry, Faculty of
Science and Technology, University of Basque
Country (UPV/EHU), Leioa 48940, Spain
- Basque
Centre for Materials, Applications and Nanostructures
(BCMaterials), UPV/EHU
Science Park, Leioa 48940, Spain
| | - Ahmad Shaabani
- Faculty
of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hassan Namazi
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research
Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešt’any, Slovakia
| |
Collapse
|
3
|
Ternary Inclusion Complex of Sinapic Acid with Hydroxypropyl-β-cyclodextrin and Hydrophilic Polymer Prepared by Microwave Technology. Processes (Basel) 2022. [DOI: 10.3390/pr10122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sinapic acid (SA) is a poorly water-soluble substance which could result in poor bioavailability. The aim of this study was to determine the “hydroxypropyl β-cyclodextrin (HPβCD)” solubilization of SA in the presence of the auxiliary substance hydroxypropyl methylcellulose (HPMC) and to evaluate the ternary inclusion complex prepared by microwave technology. Phase-solubility profiles showed that HPβCD exhibited the greatest solubilizing effect on SA in the presence of HPMC. The enhanced rate of SA dissolution was exhibited by a ternary complex. Outcomes of analyses such as “DSC, FTIR, NMR, and SEM” confirmed the embedding of SA into the cavity of the HPβCD and the formation of a ternary inclusion complex. The outcomes of antioxidant activity (ABTS and nitric oxide scavenging activity) demonstrated that SA ternary inclusion complex (TIC) presented strong antioxidant activity, which might be a result of the enhanced solubility of SA in the TIC prepared by microwave technology. Hence, SA-TIC formulation could be a better dosage form which may protect the body from free radical damage and oxidative stress. Microwave technology greatly boosted the interaction of SA with HPβCD and HPMC, and such findings are expected to contribute to raising the solubility of SA, thereby improving the bioavailability of SA.
Collapse
|
4
|
Hydroxypropyl-β-Cyclodextrin for Delivery of Sinapic Acid via Inclusion Complex Prepared by Solvent Evaporation Method. Processes (Basel) 2022. [DOI: 10.3390/pr10102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to increase the aqueous solubility and dissolution rate of sinapic acid (SA) by formulating binary inclusion complex (BIC) of SA with hydroxypropyl-β-cyclodextrin (HPβCD) using solvent evaporation (SE) technology. The phase solubility and dissolution studies were conducted to determine the solubility and in vitro release rate of SA. In addition, the prepared inclusion complex was characterized for solid state characterization using techniques such as DSC, PXRD, SEM, and FTIR. Moreover, the prepared SA-BIC was evaluated for its antioxidant activity. Results revealed that the SA solubility can be shown to improve with a change in HPβCD concentration. About 2.59 times higher solubility of SA in water was noticed in the presence of HPβCD (10 mM). Dissolution study demonstrated that the 34.11 ± 4.51% of SA was released from binary physical mixture (BPM), while the maximum release of 46.27 ± 2.79% of SA was observed for SA-BIC prepared by SE method. The prepared SA-BIC demonstrated distinctive properties when compared to pure SA, which was demonstrated by different analytical methods, such as DSC, PXRD, SEM, and FTIR, as evidence of SA inclusion into HPβCD cavity. Further, it was observed that SA-BIC displayed stronger DPPH radical scavenging activity than SA. In conclusion, SE technology considerably enhanced the complexity of SA with HPβCD, and these observations could help to heighten the SA solubility, which may lead to a better bioavailability.
Collapse
|
5
|
Ayoub AM, Gutberlet B, Preis E, Abdelsalam AM, Abu Dayyih A, Abdelkader A, Balash A, Schäfer J, Bakowsky U. Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation. Pharmaceutics 2022; 14:357. [PMID: 35214089 PMCID: PMC8875783 DOI: 10.3390/pharmaceutics14020357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance in pathogenic bacteria has become a significant public health concern. As an alternative therapeutic option, antimicrobial photodynamic therapy (aPDT) can successfully eradicate antibiotic-resistant bacteria with a lower probability of developing resistance or systemic toxicity commonly associated with the standard antibiotic treatment. Parietin (PTN), also termed physcion, a natural anthraquinone, is a promising photosensitizer somewhat underrepresented in aPDT because of its poor water solubility and potential to aggregate in the biological environment. This study investigated whether the complexation of PTN with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) could increase its solubility, enhance its photophysical properties, and improve its phototoxicity against bacteria. At first, the solubilization behavior and complexation constant of the PTN/HP-β-CD inclusion complexes were evaluated by the phase solubility method. Then, the formation and physicochemical properties of PTN/HP-β-CD complexes were analyzed and confirmed in various ways. At the same time, the photodynamic activity was assessed by the uric acid method. The blue light-mediated photodegradation of PTN in its free and complexed forms were compared. Complexation of PTN increased the aqueous solubility 28-fold and the photostability compared to free PTN. PTN/HP-β-CD complexes reduce the bacterial viability of Staphylococcus saprophyticus and Escherichia coli by > 4.8 log and > 1.0 log after irradiation, respectively. Overall, the low solubility, aggregation potential, and photoinstability of PTN were overcome by its complexation in HP-β-CD, potentially opening up new opportunities for treating infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Abdallah Mohamed Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ahmed Mohamed Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Ayat Abdelkader
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (A.M.A.); (B.G.); (E.P.); (A.M.A.); (A.A.D.); (A.A.); (J.S.)
| |
Collapse
|
6
|
Enhancing the Anticonvulsant Effects of Nifedipine in Rats Through Encapsulation with Water-Soluble β-Cyclodextrin Polymer. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Enhancing in vitro cytotoxicity of doxorubicin against MCF-7 breast cancer cells in the presence of water-soluble β-cyclodextrin polymer as a nanocarrier agent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Synthesis and characterization of supramolecular systems containing nifedipine, β-cyclodextrin and aspartic acid. Carbohydr Polym 2018; 205:480-487. [PMID: 30446131 DOI: 10.1016/j.carbpol.2018.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
The purpose of this work was to characterize complexes of nifedipine with β-cyclodextrin (β-CD), with and without auxiliary agents, to improve aqueous solubility and the dissolution profile of nifedipine. Complexes were characterized using infrared spectroscopy, thermoanalytical methods, powder X-Ray diffraction, scanning electron microscopy, phase solubility analysis and dissolution studies. Spatial configurations were determined by NMR and further examined using computational techniques. This investigation showed that the amino acid Asp was the most efficient auxiliary agent for multicomponent complexes. The spatial configurations were consistent with those obtained by molecular modelling; evidencing that nifedipine inserted its aromatic ring into β-CD, in all complexes, with Asp interacting with the wide hydrophilic rim of β-CD. The dissolution rates of nifedipine:β-CD:Asp complexes were significantly increased compared to those of the pure drug or nifedipine:β-CD. These results indicate that the nifedipine:β-CD:Asp system is a promising approach for the preparation of optimized formulations of nifedipine.
Collapse
|
9
|
Farrokhi F, Karami Z, Esmaeili-Mahani S, Heydari A. Delivery of DNAzyme targeting c-Myc gene using β-cyclodextrin polymer nanocarrier for therapeutic application in human breast cancer cell line. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Heydari A, Mehrabi F, Shamspur T, Sheibani H, Mostafavi A. Encapsulation and Controlled Release of Vitamin B2 Using Peracetyl-β-Cyclodextrin Polymer-Based Electrospun Nanofiber Scaffold. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1759-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Heydari A, Sheibani H, Hronský V, Janigová I, Šlouf M, Šiffalovič P, Chodák I. β-Cyclodextrin-epichlorohydrin polymer/graphene oxide nanocomposite: preparation and characterization. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-017-0371-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
de Araújo MVG, Vieira JVF, da Silva CW, Barison A, Andrade GRS, da Costa NB, Barboza FM, Nadal JM, Novatski A, Farago PV, Zawadzki SF. Host-guest complexes of 2-hydroxypropyl- β -cyclodextrin/ β -cyclodextrin and nifedipine: 1 H NMR, molecular modeling, and dissolution studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Water-Soluble β-cyclodextrin Polymers as Drug Carriers to Improve Solubility, Thermal Stability and Controlled Release of Nifedipine. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1617-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Sun Y, He Y, Tang B, Tao C, Ban J, Jiang L. Influence from the types of surface functional groups of RGO on the performances of thermal interface materials. RSC Adv 2017. [DOI: 10.1039/c7ra12034f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RGO nanosheets-modified epoxy resin (ER) is a major research interest because of the high thermal performance of the resulting thermal interface materials (TIMs).
Collapse
Affiliation(s)
- Yunfei Sun
- College of Electronic and Information Engineering
- Suzhou University of Sciences and Technology
- Suzhou
- People's Republic of China
| | - Yanfeng He
- School of Petroleum Engineering
- Changzhou University
- Changzhou city 213016
- China
| | - Bo Tang
- School of Petroleum Engineering
- Changzhou University
- Changzhou city 213016
- China
| | - Chongben Tao
- College of Electronic and Information Engineering
- Suzhou University of Sciences and Technology
- Suzhou
- People's Republic of China
| | - Jianmin Ban
- College of Electronic and Information Engineering
- Suzhou University of Sciences and Technology
- Suzhou
- People's Republic of China
| | - Li Jiang
- College of Electronic and Information Engineering
- Suzhou University of Sciences and Technology
- Suzhou
- People's Republic of China
| |
Collapse
|
15
|
Sun N, Wang T, Yan X. Synthesis and investigation of a self-assembled hydrogel based on hydroxyethyl cellulose and its in vitro ibuprofen drug release characteristics. RSC Adv 2017. [DOI: 10.1039/c6ra25355e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
IBU is solubilized and encapsulated by β-CDP. Then C12 side-chain grafting onto HEC forms inclusion complexes with the cavities of β-CDP in β-CDP/IBU through host–guest interactions to form a new self-assembled hydrogel gel-(β)CDP-HEC/IBU.
Collapse
Affiliation(s)
- Nan Sun
- Department of Chemistry
- College of Science
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Ting Wang
- Department of Chemistry
- College of Science
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin 150040
| |
Collapse
|
16
|
Heydari A, Khoshnood H, Sheibani H, Doostan F. Polymerization of β-cyclodextrin in the presence of bentonite clay to produce polymer nanocomposites for removal of heavy metals from drinking water. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abolfazl Heydari
- Department of Chemistry; Shahid Bahonar University of Kerman; Kerman 76169 Iran
| | - Hamideh Khoshnood
- Department of Chemistry; Shahid Bahonar University of Kerman; Kerman 76169 Iran
| | - Hassan Sheibani
- Department of Chemistry; Shahid Bahonar University of Kerman; Kerman 76169 Iran
| | - Farideh Doostan
- Physiology Research Center; Kerman University of Medical Sciences; Kerman 76169 Iran
| |
Collapse
|
17
|
Heydari A, Doostan F, Khoshnood H, Sheibani H. Water-soluble cationic poly(β-cyclodextrin-co-guanidine) as a controlled vitamin B2delivery carrier. RSC Adv 2016. [DOI: 10.1039/c6ra01011c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vitamin B2(VB2) is effectively incorporated into novel water-soluble cationic β-cyclodextrin (β-CD) polymers in order to improve its physiochemical properties.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman
- Iran
- Young Researchers Society
| | - Farideh Doostan
- Physiology Research Center and Department of Nutrition
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Hamideh Khoshnood
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | - Hassan Sheibani
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| |
Collapse
|
18
|
Heydari A, Sheibani H. Facile polymerization of β-cyclodextrin functionalized graphene or graphene oxide nanosheets using citric acid crosslinker by in situ melt polycondensation for enhanced electrochemical performance. RSC Adv 2016. [DOI: 10.1039/c5ra24685g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we report a facile, environmental friendly route to synthesize water-insoluble β-cyclodextrin (β-CD)/graphene oxide (GO) or reduced graphene oxide (rGO) nanocomposite hydrogels.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman 76169
- Iran
- Young Researchers Society
| | - Hassan Sheibani
- Department of Chemistry
- Shahid Bahonar University of Kerman
- Kerman 76169
- Iran
| |
Collapse
|