1
|
Demyanenko SV, Kalyuzhnaya YN, Bachurin SS, Khaitin AM, Kunitsyna AE, Batalshchikova SA, Evgen'ev MB, Garbuz DG. Exogenous Hsp70 exerts neuroprotective effects in peripheral nerve rupture model. Exp Neurol 2024; 373:114670. [PMID: 38158007 DOI: 10.1016/j.expneurol.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Yuliya N Kalyuzhnaya
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stanislav S Bachurin
- Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Andrey M Khaitin
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Anastasia E Kunitsyna
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana A Batalshchikova
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Kirkegaard T, Gray J, Priestman DA, Wallom KL, Atkins J, Olsen OD, Klein A, Drndarski S, Petersen NHT, Ingemann L, Smith DA, Morris L, Bornæs C, Jørgensen SH, Williams I, Hinsby A, Arenz C, Begley D, Jäättelä M, Platt FM. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 2017; 8:355ra118. [PMID: 27605553 DOI: 10.1126/scitranslmed.aad9823] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/17/2022]
Abstract
Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.
Collapse
Affiliation(s)
| | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Jennifer Atkins
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Ole Dines Olsen
- Orphazyme ApS, Copenhagen, Denmark. Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Alexander Klein
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | | | - Ian Williams
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | | | - Christoph Arenz
- Institut für Chemie der Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Begley
- Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling, and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, U.K
| |
Collapse
|
4
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Abstract
This study examined the role of exogenous heat shock protein 72 (Hsp72) in reversing sepsis-induced liver dysfunction. Sepsis was induced by cecal ligation and puncture. Liver function was determined on the basis of the enzymatic activities of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT). Apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3 and caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP) protein expressions were analyzed using Western blotting. Results showed GOT and GPT levels increased during sepsis, and levels were restored following the administration of human recombinant Hsp72 (rhHsp72). Increased liver tissue apoptosis was observed during sepsis, and normal apoptosis resumed on rhHsp72 administration. The Bcl-2/Bax ratio, cleaved caspase-3, caspase-9, and PARP protein expressions in the liver tissues were upregulated during sepsis and normalized after rhHsp72 treatment. We conclude that, during sepsis, exogenous Hsp72 restored liver dysfunction by inhibiting apoptosis via the mitochondria-initiated caspase pathway.
Collapse
|
6
|
Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar ART, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Vet Microbiol 2014; 174:116-26. [PMID: 25293397 DOI: 10.1016/j.vetmic.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
As cellular immunity is essential for virus clearance, it is commonly accepted that no adequate cellular immunity is achieved by all available inactivated HA-based influenza vaccines. Thus, an improved influenza vaccine to induce both humoral and cell-mediated immune responses is urgently required to control LPAI H9N2 outbreaks in poultry farms. M2e-based vaccines have been suggested and developed as a new generation of universal vaccine candidate against influenza A infection. Our previous study have shown that a prime-boost administration of recombinant 4×M2e.HSP70c (r4M2e/H70c) fusion protein compared to conventional HA-based influenza vaccines provided full protection against lethal dose of influenza A viruses in mice. In the present study, the immunogenicity and protective efficacy of (r4M2e/H70c) was examined in chickens. The data reported herein show that protection against H9N2 viral challenge was significantly increased in chickens by injection of r4M2e/H70c compared with injection of conventional HA-based influenza vaccine adjuvanted with MF59 or recombinant 4×M2e (r4M2e) without HSP70c. Oropharyngeal and cloacal shedding of the virus was detected in all of the r4M2e/H70c vaccinated birds at 2 days after challenge, but the titer was low and decreased rapidly to reach undetectable levels at 7 days after challenge. Moreover, comparison of protective efficacy against LPAI H9N2 in birds intramuscularly immunized with r4M2e/H70c likely represented the ability of the M2e-based vaccine in providing cross-protection against heterosubtypic H9N2 challenge and also allowed the host immune system to induce HA-homosubtype neutralizing antibody against H9N2 challenge. This protective immunity might be attributed to enhanced cell-mediated immunity, which is interpreted as increased lymphocytes proliferation, increased levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines production and increased CD4(+) to CD8(+) ratios, resulting from the injection of four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (4×M2e) genetically fused to C-terminus of Mycobacterium tuberculosis HSP70 (mHSP70c).
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran; Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, PO Box 14155-6453, Tehran, Iran
| | - Ali Mohammad Latify
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Hassan Nili
- Department of Avian Research, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Iran
| | | | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Mashallah Mohammadi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Reza Banihashemi
- Department of Medical Immunology, Tarbiyat Modares University, Tehran, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran.
| |
Collapse
|
7
|
|
8
|
In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology 2012; 430:63-72. [PMID: 22595444 DOI: 10.1016/j.virol.2012.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022]
Abstract
Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.
Collapse
|
9
|
Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D. Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci 2010; 101:2621-8. [PMID: 20880334 PMCID: PMC11159612 DOI: 10.1111/j.1349-7006.2010.01722.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Attenuated Salmonella typhimurium possess the ability to stimulate innate immune responses and preferentially allocate within the solid tumor. These two main characteristics make attenuated Salmonella one of the most attractive vehicles for development of vaccine and also targeted cancer therapies. However, location of Salmonella prevents the process of antigen presentation. Salmonella Type III secretion system can be utilized to circumvent this problem because this system secretes the protein it encoded outside the cells. Heat shock protein 70 (Hsp70) is referred to as an "immunochaperone" for its capacity to elicit tumor-specific adaptive immune responses in the form of Hsp70-TAA (tumor associated antigen) complex. Hsp70 facilitates the cross-presentation of exogenous antigens through its receptor on antigen-presenting cells and therefore activates an antigen-specific cytotoxic T lymphocyte (CTL) response, which can directly contribute to potent anti-tumor immunity. Here, we designed a novel therapeutic vaccine utilizing the type III secretion system and Hsp70 to deliver and present the tumor-specific antigen. This live recombinant bacteria vaccine, when administrated orally, successfully broke the immune tolerance, induced a specific CTL response against tumor cells, and therefore revealed protective and therapeutic effects against generation and growth of B16F10 melanoma in C57BL/6J mice.
Collapse
Affiliation(s)
- Xiangying Zhu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
10
|
Takemoto S, Nishikawa M, Guan X, Ohno Y, Yata T, Takakura Y. Enhanced Generation of Cytotoxic T Lymphocytes by Heat Shock Protein 70 Fusion Proteins Harboring Both CD8+ T Cell and CD4+ T Cell Epitopes. Mol Pharm 2010; 7:1715-23. [DOI: 10.1021/mp1001069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Seiji Takemoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xin Guan
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Ohno
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoya Yata
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Takemoto S, Yamaoka K, Nishikawa M, Yano Y, Takakura Y. Bootstrap method-based estimation of the minimum sample number for obtaining pharmacokinetic parameters in preclinical experiments. J Pharm Sci 2010; 99:2176-84. [PMID: 19902519 DOI: 10.1002/jps.21975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Empirically, 3-6 samples at each sampling time point have been used for most preclinical one-point sampling experiments without any theoretical justification. The purpose of the present study is to propose a practical approach to determine the minimum sample number (N(min)) based on Monte Carlo simulation and a bootstrap resampling. A computer program MOMENT(BS), in which a bootstrap resampling algorithm is used to estimate mean and standard deviations of pharmacokinetic parameters, such as area under the curve and mean residence time, was applied to estimate N(min). A new simulation program, MONTE1, was developed to generate simulated data for bootstrap resampling using the model parameters including inter- and/or intra-individual variations. Then, an index, S(2)CV calculated as the sum of the squared coefficient of variation is proposed to determine the N(min). The proposed approach was applied to the actual data in preclinical experiments, and the usefulness of the approach was suggested. An issue that one-point sampling data cannot separately assess inter- and intra-individual variability is discussed.
Collapse
Affiliation(s)
- Seiji Takemoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
12
|
Development of a novel Hsp70-based DNA vaccine as a multifunctional antigen delivery system. J Control Release 2010; 142:411-5. [DOI: 10.1016/j.jconrel.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/17/2009] [Accepted: 11/06/2009] [Indexed: 11/17/2022]
|
13
|
Induction of tumor-specific immune response by gene transfer of Hsp70-cell-penetrating peptide fusion protein to tumors in mice. Mol Ther 2009; 18:421-8. [PMID: 19724264 DOI: 10.1038/mt.2009.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To induce a tumor-specific immune response by delivering tumor-associated antigens in tumor cells to antigen-presenting cells (APCs), we designed a fusion protein which consists of heat-shock protein 70 (Hsp70) and the C-terminal 34 amino acids of herpes simplex virus VP22 protein (VP22(268-301)), the former having a peptide binding domain and an ability to be recognized by APCs, and the latter able to achieve cell penetration. Hsp70-VP22(268-301), the fusion protein, was efficiently taken up by mouse dendritic cell (DC) line DC2.4. Major histocompatibility complex (MHC) class I-restricted presentation of an epitope peptide of ovalbumin (OVA) was examined in DC2.4, and Hsp70-VP22(268-301) significantly increased the presentation of the peptide compared with Hsp70. Electroporation-assisted injection of naked plasmid vector expressing Hsp70-VP22(268-301) (pHsp70-VP22(268-301)) into subcutaneous tumors of EG7-OVA, a mouse lymphoma-expressing OVA, significantly increased the survival of mice compared with the same treatment with pHSp70, a plasmid expressing Hsp70. Splenocytes from the pHsp70-VP22(268-301)-treated mice exhibited cytolytic activity against both EG7-OVA and the parent EL4, but not against mouse melanoma B16-F10, suggesting that not only OVA-derived antigens but those common to EG7-OVA and EL4 are delivered to APCs. These results provide a new therapeutic method to induce tumor-specific antitumor immunity without identifying nor isolating tumor-associated antigens.
Collapse
|
14
|
Takemoto S, Nishikawa M, Otsuki T, Yamaoka A, Maeda K, Ota A, Takakura Y. Enhanced generation of cytotoxic T lymphocytes by increased cytosolic delivery of MHC class I epitope fused to mouse heat shock protein 70 via polyhistidine conjugation. J Control Release 2009; 135:11-8. [DOI: 10.1016/j.jconrel.2008.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/15/2008] [Accepted: 11/22/2008] [Indexed: 11/28/2022]
|
15
|
Matsumoto M, Dimayuga PC, Wang C, Kirzner J, Cercek M, Yano J, Chyu KY, Shah PK, Cercek B. Exogenous heat shock protein-70 inhibits cigarette smoke-induced intimal thickening. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1320-7. [PMID: 18703412 DOI: 10.1152/ajpregu.00624.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cigarette smoke is associated with increased carotid intimal thickening or stroke. Preliminary work showed that exposure to smoke resulted in a 4.5-fold reduction of heat shock protein-70 (HSP70) expression in spleens of mice using gene microarray analysis. In the current study, we investigated the role of extracellular HSP70 in carotid intimal thickening of mice exposed to cigarette smoke. Intimal thickening was induced by placement of a cuff around the right carotid artery of mice. Cuff injury resulted in increased HSP70 mRNA expression in carotid arteries that persisted for 21 days. Cigarette smoke exposure decreased arterial HSP70 expression and significantly increased intimal thickening compared with mice exposed to air. Treatment of mice exposed to cigarette smoke with intravenous recombinant HSP70 attenuated intimal thickening through reduced phosphorylated extracellular signal-regulated kinase (pERK) expression in the arterial wall. In vitro experiments with rat aortic smooth muscle cells confirmed that recombinant HSP70 decreases pERK and proliferating cell nuclear antigen (PCNA) expression in cells exposed to cigarette smoke extract and H(2)O(2). Our study suggests that decreased expression of arterial HSP70 is an important mechanism by which exposure to cigarette smoke augments intimal thickening. The effects of recombinant HSP70 suggest a role for extracellular HSP70.
Collapse
Affiliation(s)
- Michiaki Matsumoto
- Division of Cardiology and Atherosclerosis Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nishikawa M, Takemoto S, Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int J Pharm 2007; 354:23-7. [PMID: 17980980 DOI: 10.1016/j.ijpharm.2007.09.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/18/2007] [Accepted: 09/24/2007] [Indexed: 11/25/2022]
Abstract
Delivery of antigens to antigen presenting cells (APCs) is a key issue for developing effective cancer vaccines. Controlling the tissue distribution of antigens can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes (CTL). Heat shock protein 70 (Hsp70) forms complexes with a variety of tumor-related antigens via its polypeptide-binding domain. Because Hsp70 is taken up by APCs through recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system for APCs. Model antigens were complexed with or conjugated to Hsp70, resulting in greater antigen-specific immune responses. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
17
|
Nishikawa M, Takemoto S, Takakura Y. [Development of heat shock proteins with controlled distribution properties and their application to vaccine delivery]. YAKUGAKU ZASSHI 2007; 127:293-300. [PMID: 17268149 DOI: 10.1248/yakushi.127.293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antigen delivery to antigen-presenting cells (APCs) is a key issue in developing effective cancer vaccines. Controlling the tissue distribution of antigens, which are administered in a peptide/protein or DNA form, can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes. Heat-shock protein 70 (Hsp70), a member of a highly conserved family of molecular chaperones, forms complexes with a variety of tumor-related antigens via its polypeptide binding domain. Because Hsp70 is taken up by APCs through the recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system to APCs. Model antigens were complexed with or conjugated to Hsp70, by which greater antigen-specific immune responses were achieved. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | |
Collapse
|
18
|
Kuboki S, Schuster R, Blanchard J, Pritts TA, Wong HR, Lentsch AB. Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1141-9. [PMID: 17185630 DOI: 10.1152/ajpgi.00491.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well established that liver ischemia-reperfusion induces the expression of heat shock protein (HSP) 70. However, the biological function of HSP70 in this injury is unclear. In this study, we sought to determine the role of HSP70 in hepatic ischemia-reperfusion injury in mice. Male mice were subjected to 90 min of partial hepatic ischemia followed by up to 8 h of reperfusion. HSP70 was rapidly upregulated after reperfusion. To explore the function of HSP70, sodium arsenite (8 mg/kg iv) was injected before surgery. We found that this dose induced HSP70 expression within 6 h of treatment. Induction of HSP70 with arsenite resulted in a >50% reduction in liver injury as determined by serum transaminases and histology. In addition, arsenite similarly reduced liver neutrophil recruitment and liver nuclear factor-kappaB activation, and attenuated serum levels of tumor necrosis factor-alpha and macrophage inflammatory protein-2, but increased levels of interleukin (IL)-6. In HSP70 knockout mice, arsenite did not protect against liver injury but did reduce liver neutrophil accumulation. Arsenite-induced reductions in neutrophil accumulation in HSP70 knockout mice were found to be mediated by IL-6. To determine whether extracellular HSP70 contributed to the injury, recombinant HSP70 was injected before surgery. Intravenous injection of 10 microg of recombinant HSP70 had no effect on liver injury after ischemia-reperfusion. The data suggest that intracellular HSP70 is directly hepatoprotective during ischemia-reperfusion injury and that extracellular HSP70 is not a significant contributor to the injury response in this model. Targeted induction of HSP70 may represent a potential therapeutic option for postischemic liver injury.
Collapse
Affiliation(s)
- Satoshi Kuboki
- The Laboratory of Trauma, Sepsis and Inflammation Research, University of Cincinnati, Department of Surgery, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | |
Collapse
|
19
|
Takemoto S, Yamaoka K, Nishikawa M, Takakura Y. Histogram Analysis of Pharmacokinetic Parameters by Bootstrap Resampling from One-point Sampling Data in Animal Experiments. Drug Metab Pharmacokinet 2006; 21:458-64. [PMID: 17220561 DOI: 10.2133/dmpk.21.458] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bootstrap method is proposed for assessing statistical histograms of pharmacokinetic parameters (AUC, MRT, CL and V(ss)) from one-point sampling data in animal experiments. A computer program, MOMENT(BS), written in Visual Basic on Microsoft Excel, was developed for the bootstrap calculation and the construction of histograms. MOMENT(BS) was applied to one-point sampling data of the blood concentration of three physiologically active proteins ((111)In labeled Hsp70, Suc(20)-BSA and Suc(40)-BSA) administered in different doses to mice. The histograms of AUC, MRT, CL and V(ss) were close to a normal (Gaussian) distribution with the bootstrap resampling number (200), or more, considering the skewness and kurtosis of the histograms. A good agreement of means and SD was obtained between the bootstrap and Bailer's approaches. The hypothesis test based on the normal distribution clearly demonstrated that the disposition of (111)In-Hsp70 and Suc(20)-BSA was almost independent of dose, whereas that of (111)In-Suc(40)-BSA was definitely dose-dependent. In conclusion, the bootstrap method was found to be an efficient method for assessing the histogram of pharmacokinetic parameters of blood or tissue disposition data by one-point sampling.
Collapse
Affiliation(s)
- Seiji Takemoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Science, Kyoto University
| | | | | | | |
Collapse
|