1
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Sousa Â, Faria R, Albuquerque T, Bhatt H, Biswas S, Queiroz JA, Costa D. Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Coutinho E, Batista C, Sousa F, Queiroz J, Costa D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol Pharm 2017; 14:626-638. [PMID: 28199112 DOI: 10.1021/acs.molpharmaceut.6b00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.
Collapse
Affiliation(s)
- Eduarda Coutinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia Batista
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João Queiroz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
5
|
Guido N, Starostina E, Leake D, Saaem I. Improved PCR Amplification of Broad Spectrum GC DNA Templates. PLoS One 2016; 11:e0156478. [PMID: 27271574 PMCID: PMC4896431 DOI: 10.1371/journal.pone.0156478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.
Collapse
Affiliation(s)
- Nicholas Guido
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Elena Starostina
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Devin Leake
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Ishtiaq Saaem
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
6
|
Naghipour A, Badpa K, Notash B. From phosphonium salts to binuclear ortho-palladated phosphorus ylides. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Anders M. Exploiting endobiotic metabolic pathways to target xenobiotic antioxidants to mitochondria. Mitochondrion 2013; 13:454-63. [DOI: 10.1016/j.mito.2012.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/17/2012] [Accepted: 10/23/2012] [Indexed: 02/04/2023]
|
8
|
Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012; 82:1-18. [DOI: 10.1016/j.ejpb.2012.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
9
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
10
|
Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F. Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev 2011; 132:412-23. [PMID: 21645537 DOI: 10.1016/j.mad.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/02/2011] [Accepted: 05/21/2011] [Indexed: 12/15/2022]
Abstract
Maintenance of the mitochondrial genome is a major challenge for cells, particularly as they begin to age. Although it is established that organelles possess regular DNA repair pathways, many aspects of these complex processes and of their regulation remain to be investigated. Mitochondrial transfection of isolated organelles and in whole cells with customized DNA synthesized to contain defined lesions has wide prospects for deciphering repair mechanisms in a physiological context. We document here the strategies currently developed to transfer DNA of interest into mitochondria. Methodologies with isolated mitochondria claim to exploit the protein import pathway or the natural competence of the organelles, to permeate the membranes or to use conjugal transfer from bacteria. Besides biolistics, which remains restricted to yeast and Chlamydomonas reinhardtii, nanocarriers or fusion proteins have been explored as methods to target custom DNA into mitochondria in intact cells. In further approaches, whole mitochondria have been transferred into recipient cells. Repair failure or error-prone repair leads to mutations which potentially could be rescued by allotopic expression of proteins. The relevance of the different approaches for the analysis of mitochondrial DNA repair mechanisms and of aging is discussed.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS/Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
11
|
DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One 2010; 5:e11024. [PMID: 20552011 PMCID: PMC2883997 DOI: 10.1371/journal.pone.0011024] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/16/2010] [Indexed: 01/10/2023] Open
Abstract
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application.
Collapse
|
12
|
Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL. The approaches for manipulating mitochondrial proteome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:451-461. [PMID: 20544885 PMCID: PMC3249350 DOI: 10.1002/em.20570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Over the past decade a large volume of research data has accumulated which has established a fundamental role for mitochondria in normal cellular functioning, as well as in various pathologies. Mitochondria play a pivotal role in metabolism and energy production, and are one of the key players involved in programmed cell death. On the other hand, mitochondrial dysfunction is implicated, directly or indirectly in numerous pathological conditions including inherited mitochondrial disorders, diabetes, cardiovascular and neurodegenerative diseases, and a variety of malignancies. The ability to modulate mitochondrial function by altering the diverse protein component of this organelle may be of great value for developing future therapeutic interventions. This review will discuss approaches used to introduce proteins into mitochondria. One group of methods utilizes strategies aimed at expressing proteins from genes in the nucleus. These include overexpression of nuclear-encoded mitochondrial proteins, allotopic expression, which is the re-coding and relocation of mitochondrial genes to the nucleus for expression and subsequent delivery of their gene products to mitochondria, and xenotopic expression, which is the nuclear expression of genes coding electron transport chain components from distant species, for delivery of their products to mammalian mitochondria. Additionally, antigenomic and progenomic strategies which focus on expression of mitochondrially targeted nuclear proteins involved in the maintenance of mtDNA will be discussed. The second group of methods considered will focus on attempts to use purified proteins for mitochondrial delivery. Special consideration has been given to the complexities involved in targeting exogenous proteins to mitochondria.
Collapse
|
13
|
Dani MA, Dani SU. Improving upon nature's somatic mitochondrial DNA therapies. Med Hypotheses 2010; 74:1021-5. [PMID: 20116178 DOI: 10.1016/j.mehy.2010.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 01/10/2010] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) directs key metabolic functions in eukaryotic cells. While a number of mtDNA mutations are known causes of human diseases and age-related dysfunctions, some mtDNA haplotypes are associated with extreme longevity. Despite the mutagenic mitochondrial environment naturally enhancing somatic mtDNA mutation rates, mtDNA remains grossly stable along generations of plant and animal species including man. This relative stability can be accounted for by the purging of deleterious mutations by natural selection operating on growing cells, tissues, organisms and populations, as observed in gametogenesis, embryogenesis, oncogenesis and cladogenesis. In the adult multicellular organism, however, mtDNA mutations accumulate in slowly dividing cells, and, to a much higher degree, in postmitotic cells and tissues. Dynamic mitochondrial fusion and fission, by redistributing polymorphic mtDNA molecules; mitophagy, by clearing defective mitochondria and mutated mtDNA; compensatory mutations and mtDNA repair can compensate for the accumulation of mtDNA mutations only to a certain extent, thereby creating a dysfunctional threshold. Here we hypothesize that this threshold is naturally up-regulated by both vertical and horizontal transfers of mtDNA from stem cells or cell types which retain the capacity of purging deleterious mtDNA through cell division and natural selection in the adult organism. When these natural cell and tissue mtDNA reserves are exhausted, artificial mtDNA therapy may provide for additional threshold up-regulation. Replacement of mtDNA has been already successfully accomplished in early stage embryos and stem cells in a number of species including primates. It is thus simply a matter of refinement of technique that somatic mtDNA therapy, i.e., therapy of pathological conditions based on the transfer of mtDNA to somatic eukaryotic cells and tissues, becomes a medical reality.
Collapse
Affiliation(s)
- M A Dani
- Department of Neuro- and Sensory Physiology, University of Göttingen, Germany.
| | | |
Collapse
|
14
|
ω-Thioacetylalkylphosphonium salts: Precursors for the preparation of phosphonium-functionalised gold nanoparticles. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Wong LJ, Cohen BH, Naviaux RK. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008; 94:16-37. [PMID: 18243024 PMCID: PMC2810849 DOI: 10.1016/j.ymgme.2007.11.018] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 12/12/2022]
Abstract
Mitochondrial disease confirmation and establishment of a specific molecular diagnosis requires extensive clinical and laboratory evaluation. Dual genome origins of mitochondrial disease, multi-organ system manifestations, and an ever increasing spectrum of recognized phenotypes represent the main diagnostic challenges. To overcome these obstacles, compiling information from a variety of diagnostic laboratory modalities can often provide sufficient evidence to establish an etiology. These include blood and tissue histochemical and analyte measurements, neuroimaging, provocative testing, enzymatic assays of tissue samples and cultured cells, as well as DNA analysis. As interpretation of results from these multifaceted investigations can become quite complex, the Diagnostic Committee of the Mitochondrial Medicine Society developed this review to provide an overview of currently available and emerging methodologies for the diagnosis of primary mitochondrial disease, with a focus on disorders characterized by impairment of oxidative phosphorylation. The aim of this work is to facilitate the diagnosis of mitochondrial disease by geneticists, neurologists, and other metabolic specialists who face the challenge of evaluating patients of all ages with suspected mitochondrial disease.
Collapse
Affiliation(s)
- Richard H. Haas
- Departments of Neurosciences & Pediatrics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
- Corresponding Author: Richard H. Haas, MB, BChir, MRCP, Professor of Neurosciences and Pediatrics, University of California San Diego, T. 858-822-6700; F. 858-822-6707;
| | - Sumit Parikh
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Marni J. Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Russell P. Saneto
- Division of Pediatric Neurology, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA
| | - Nicole I. Wolf
- Department of Child Neurology, University Children's Hospital, Heidelberg, Germany
| | - Niklas Darin
- Division of Child Neurology, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Bruce H. Cohen
- Division of Neuroscience, The Cleveland Clinic, Cleveland, OH
| | - Robert K. Naviaux
- Departments of Medicine and Pediatrics, Division of Medical and Biochemical Genetics, University of California San Diego, La Jolla, CA and Rady Children's Hospital San Diego, San Diego, CA
| |
Collapse
|
16
|
Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines. J Comput Aided Mol Des 2008; 22:629-45. [PMID: 18338229 PMCID: PMC2516532 DOI: 10.1007/s10822-008-9194-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.
Collapse
|
17
|
Katrangi E, D'Souza G, Boddapati SV, Kulawiec M, Singh KK, Bigger B, Weissig V. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res 2008; 10:561-70. [PMID: 18069915 DOI: 10.1089/rej.2007.0575] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA mutations are the direct cause of several physiological disorders and are also associated with the aging process. The modest progress made over the past two decades towards manipulating the mitochondrial genome and understanding its function within living mammalian cells means that cures for mitochondrial DNA mutations are still elusive. Here, we report that transformed mammalian cells internalize exogenous isolated mitochondria upon simple co-incubation. We first demonstrate the physical presence of internalized mitochondria within recipient cells using fluorescence microscopy. Second, we show that xenogenic transfer of murine mitochondria into human cells lacking functional mitochondria can functionally restore respiration in cells lacking mtDNA. Third, utilizing the natural competence of isolated mitochondria to take up linear DNA molecules, we demonstrate the feasibility of using cellular internalization of isolated exogenous mitochondria as a potential tool for studying mitochondrial genetics in living mammalian cells.
Collapse
Affiliation(s)
- Eyad Katrangi
- Bouve College of Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Funtionalization of Pharmaceutical Nanocarriers for Mitochondria-Targeted Drug and DNA Delivery. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-0-387-76554-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
19
|
The synthesis and characterisation of masked phosphonioalkyl selenoates: Potential ligands for the production of functionalised gold nanoparticles. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2007.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Horobin RW, Trapp S, Weissig V. Mitochondriotropics: A review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 2007; 121:125-36. [PMID: 17658192 DOI: 10.1016/j.jconrel.2007.05.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Since compounds targeting mitochondria exhibit diverse accumulation mechanisms and chemical features, various questions arise. Do such "mitochondriotropics" have a characteristic chemistry? What are mitochondrial uptake mechanisms? Do mitochondriotropics necessarily accumulate in mitochondria or merely have access? Is the concept "mitochondriotropic" of any practical value? To seek answers, a non-biased sample of >100 mitochondriotropics was generated from the review literature. This dataset was examined using: physicochemical classification; quantitative structure-activity relations (QSAR) models; and a Fick-Nernst-Planck physicochemical model. The ability of the latter two approaches to predict mitochondriotropic behaviour was assessed, and comparisons made between methods, and with current assumptions. All approaches provided instructive pictures of the nature of mitochondriotropics. Thus although lipophilic cations are regarded as the commonest structural type, only a third were such. Much the same proportion were acids, potentially or actually anions. Many mitochondriotropics were electrically neutral compounds. All categorizations involved overall molecular properties, not the presence of "mitochondriotropic tags"--again contrary to literature concepts. Selective mitochondrial accumulation involved electric potential, ion-trapping, and complex formation with cardiolipin; non-specific accumulation involved membrane partitioning. Non-specific access required only low lipophilicity. Mitochondrial targeting did not preclude additional accumulation sites, e.g. lysosomes. The concept "mitochondriotropic" remains useful, although may imply access, not accumulation. QSAR and Fick-Nernst-Planck approaches are complementary--neither is universally applicable. Using both approaches enabled the mitochondriotropic behavior of >80% of the dataset to be predicted, and the physicochemistry of mitochondriotropics to be specified in some detail. This can facilitate guided syntheses and selection of optimal mitochondriotropic structures.
Collapse
Affiliation(s)
- Richard W Horobin
- Division of Neurosciences and Biomedical Systems, IBLS, University of Glasgow, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
21
|
Abstract
Mitochondrial research has made an enormous leap since mitochondrial DNA mutations were identified as a primary cause for human diseases in 1988 and the organelle’s crucial role in apoptosis was identified during the 1990s. Considerable progress has been made in identifying the molecular components of the mitochondrial machinery responsible for life and cell death; however, effective therapies for diseases caused by mitochondrial dysfunction remain elusive. An impediment to manipulating, probing and assessing the functional components of mammalian mitochondria within living cells is their limited accessibility to direct physical, biochemical and pharmacological manipulation. Recent advances in nanotechnology hold the promise of helping to overcome these obstacles. New tools will undoubtedly emerge, creating new avenues for the diagnosis and therapy of mitochondrial disorders. This review briefly discusses current efforts to merge nanobiotechnology with mitochondrial medicine.
Collapse
Affiliation(s)
- Volkmar Weissig
- Northeastern University, Bouve College of Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA, USA.
| | | | | | | |
Collapse
|