1
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2024:10.1007/s11302-024-10033-y. [PMID: 39004650 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
2
|
A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 2019; 224:2281-2295. [PMID: 31278571 DOI: 10.1007/s00429-019-01917-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.
Collapse
|
3
|
Arellano JI, Harding B, Thomas JL. Adult Human Hippocampus: No New Neurons in Sight. Cereb Cortex 2019; 28:2479-2481. [PMID: 29746611 DOI: 10.1093/cercor/bhy106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
In this issue of Cerebral Cortex, Cipriani et al. are following up on the recent report of Sorrels et al. to add novel immunohistological observations indicating that, unlike rodents, adult and aging humans do not acquire new neurons in the hippocampus. The common finding emerging from these 2 different, but almost simultaneous studies is highly significant because the dentate gyrus of the hippocampus was, until recently, considered as the only structure in the human brain that may continue neurogenesis throughout the full life span.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brian Harding
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University, New Haven, CT, USA.,Université Pierre et Marie Curie, Paris 06, UMR S 1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
4
|
Almamy A, Schwerk C, Schroten H, Ishikawa H, Asif AR, Reuss B. Interactions of antisera to different Chlamydia and Chlamydophila species with the ribosomal protein RPS27a correlate with impaired protein synthesis in a human choroid plexus papilloma cell line. Immunol Res 2018; 65:1110-1123. [PMID: 28913776 DOI: 10.1007/s12026-017-8952-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlamydia trachomatis (CT) and the Chlamydophila species (CS) Chlamydophila pneumoniae (CPn), and Chlamydophila psittaci (CPs) are suggested to induce autoantibodies causative of several human autoimmune disorders like rheumatoid arthritis and systemic lupus erythematosus (SLE). The aim of the present study was therefore to identify cellular protein interaction partners with antisera to CT (α-CT) or CS (α-CS) and to identify functional consequences of such interaction in vitro. As detected with a commercial first trimester human prenatal brain multiprotein array (hEXselect, Engine, Germany), the most frequent interaction partner with both α-CT and α-CS was the ribosomal small subunit protein RPS27a. This could be confirmed by Western blot analysis with a recombinant RPS27a sample. In addition, immunocytochemistry with both antisera in the human choroid plexus papilloma cell line HIBCPP revealed a granular cytoplasmic staining, and Western blot analysis with whole-cell protein samples of HIBCPP cells revealed both antisera to label protein bands of different molecular weights and intensity. By 2D Western blot analysis and mass spectrometry, one of the protein spots interacting with α-CT could be identified as the RPS27a. Finally, two different methods for the detection of protein synthesis activity, the SUnSET technique and an HPG fluorescence assay revealed both antisera to cause reduced translational activity in HIBCPP cells. Together with previous findings of RPS27a as an autoimmune target in a mouse model of systemic lupus erythematosus (SLE), these results suggest that infections with CT and/or CS could induce SLE-associated immune modifications. However, direct evidence for a pathogenic role of these interactions for SLE demands further investigations.
Collapse
Affiliation(s)
- Abdullah Almamy
- Neuroanatomy, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | | | - Abdul Rahman Asif
- Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Bernhard Reuss
- Neuroanatomy, University Medical Center Göttingen, Göttingen, Germany. .,Institute for Neuroanatomy, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Federal Republic of Germany.
| |
Collapse
|
5
|
Reuss B, Asif AR, Almamy A, Schwerk C, Schroten H, Ishikawa H, Drummer C, Behr R. Antisera against Neisseria gonorrhoeae cross-react with specific brain proteins of the common marmoset monkey and other nonhuman primate species. Brain Res 2016; 1653:23-38. [PMID: 27765579 DOI: 10.1016/j.brainres.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023]
Abstract
Prenatal maternal infections with Neisseria gonorrhoeae (NG) correlate with an increased lifetime probability for the offspring to develop psychosis. We could previously demonstrate that in human choroid plexus papilloma cells, anti-NG antibodies (α-NG) bind to mitochondrial proteins HSP60 and ATPB, and interfere with cellular energy metabolism. To assess the in vivo relevance for this, especially during prenatal neural development, we investigated here interactions of NG-specific antisera (α-NG1, α-NG2) with brain, choroid plexus and other non-neural tissues in pre- and perinatal samples of the nonhuman primate (NHP) Callithrix jacchus (CJ), a NHP model for preclinical research. In histological sections at embryonic day E75, immunohistochemistry revealed α-NG1 and -2-staining in choroid plexus, ganglionic hill, optic cup, heart, and liver. Within the cells, organelle-like structures were labeled, which could be identified by immunohistochemical double-labeling as mitochondria. Both one- and two-dimensional Western blot analysis revealed tissue specific patterns of α-NG1 immunoreactive bands and spots, respectively, which were subsequently characterized by mass spectrometry. Thereby we could confirm the interactions of α-NG1 with human HSP60 and ATPB also in CJ choroid plexus and liver. Even more important, in the CJ brain, several new targets, including NCAM1, CRMP2, and SYT1, were identified, which by unrelated studies have been previously suggested to correlate with an increased schizophrenia risk. These findings support the idea that the marmoset monkey is a useful NHP model to investigate the role of maternal bacterial infections during prenatal brain development, and thereby might improve the understanding of this important aspect of schizophrenia pathology.
Collapse
Affiliation(s)
- Bernhard Reuss
- Neuroanatomy, University Medical Center Göttingen, Germany.
| | - Abdul R Asif
- Clinical Chemistry/UMG-Labs, University Medical Center Göttingen, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | | | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Smith R, Myers K, Ravits J, Bowser R. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015. [PMID: 26220261 DOI: 10.1016/j.mehy.2015.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder manifested primarily by loss of upper and lower motor neurons. Current explanations for disease progression invoke regional spread attributed to the transfer of pathogenic factors among physically contiguous neurons. However, this explanation incompletely explains certain clinical and in vitro data. Considering this, we propose that the cerebrospinal fluid (CSF) pathway is likely to be a key vector for seeding local and distal disease. Subsequent disease progression would be expected to occur independently via either axonal or CSF transmission. If one accepts the hypothesis that the CSF pathway is involved in ALS progression, it follows that the choroid plexus (CP) might well be a driver of the disease process. In support of this, we briefly review the anatomical and physiological features of the CSF pathway and the choroid plexus responsible for secreting CSF. In addition, we draw attention to the interface of the CP and CSF with the immune system. We then summarize both clinical and cell culture research that supports a key role of the CSF in the establishment and inter-neuronal spread of ALS, and which suggest directions for translational research.
Collapse
Affiliation(s)
- Richard Smith
- Center for Neurologic Study, 7590 Fay Ave., Suite 517, La Jolla, CA 92037, United States.
| | - Kathleen Myers
- Center for Neurologic Study, 7590 Fay Ave., Suite 517, La Jolla, CA 92037, United States
| | - John Ravits
- University of California San Diego School of Medicine, Dept. of Neurosciences, 9500 Gilman Dr. #0624, La Jolla, CA 92093, United States
| | - Robert Bowser
- Barrow Neurological Institute, Gregory W. Fulton ALS and Neuromuscular Research Center, 350 West Thomas Rd., Phoenix, AZ 85013, United States
| |
Collapse
|
7
|
Reuss B, Schroten H, Ishikawa H, Asif AR. Cross-reactivity of Antibodies Directed to the Gram-Negative Bacterium Neisseria gonorrhoeae With Heat Shock Protein 60 and ATP-Binding Protein Correlates to Reduced Mitochondrial Activity in HIBCPP Choroid Plexus Papilloma Cells. J Mol Neurosci 2015; 57:123-38. [PMID: 26080747 DOI: 10.1007/s12031-015-0585-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Antibacterial antibodies can cause neurologic side-effects by cross-reactivity with cellular antigens. Here we investigated interactions of antibodies to Neisseria gonorrhoeae (α-NG) - maternal infections by which increases the offspring's risk for later psychosis-with HIBCPP cells, a cell culture model of choroid plexus epithelium. Immunocytochemistry and Western blotting with α-NG, revealed organelle-like intracellular staining in HIBCPP cells, and labelling of several immunoreactive bands in cellular protein. Two-dimensional Western blotting revealed several immunopositive spots, most prominent of which were identified by mass spectrometry as mitochondrially localized proteins heat shock protein 60 (Hsp60) and ATP-binding protein β-subunit (ATPB). Similarly α-NG interacted with commercial samples of these proteins as revealed by Western blotting. Three alternative methods (JC-1, Janus green and MTT staining) revealed α-NG to cause in HIBCPP cells a significant decrease in mitochondrial activity, which could be reverted by neuroleptic drugs. Immunoreactivity of α-NG with choroid plexus epithelium in human post mortem samples suggests in vivo relevance of these findings. Finally, distinctly different staining patterns of antibodies against Neisseria meningitidis (α-NM), confirmed antibody specificity. To our knowledge this is the first report that α-NG cross-reactivity with Hsp60 and ATPB impairs mitochondrial activity in choroid plexus epithelial cells, pathogenetic relevance of which needs further clarification.
Collapse
Affiliation(s)
- B Reuss
- Institute for Neuroanatomy, University Medicine Göttingen (UMG), Kreuzbergring 36, 37075, Göttingen, Federal Republic of Germany,
| | | | | | | |
Collapse
|
8
|
Choi JS, Berdis AJ. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:165-76. [PMID: 26004088 DOI: 10.1016/j.bbapap.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
Abstract
Nucleosides and their corresponding mono-, di-, and triphosphates play important roles in maintaining cellular homeostasis. In addition, perturbations in this homeostasis can result in dysfunctional cellular processes that cause pathological conditions such as cancer and autoimmune diseases. This review article discusses contemporary research areas applying nucleoside analogs to probe the mechanistic details underlying the complexities of nucleoside metabolism at the molecular and cellular levels. The first area describes classic and contemporary approaches used to quantify the activity of nucleoside transporters, an important class of membrane proteins that mediate the influx and efflux of nucleosides and nucleobases. A focal point of this section is describing how biophotonic nucleosides are replacing conventional assays employing radiolabeled substrates to study the mechanism of these proteins. The second section describes approaches to understand the utilization of nucleoside triphosphates by cellular DNA polymerases during DNA synthesis. Emphasis here is placed on describing how novel nucleoside analogs such as 5-ethynyl-2'-deoxyuridine are being used to quantify DNA synthesis during normal replication as well as during the replication of damaged DNA. In both sections, seminal research articles relevant to these areas are described to highlight how these novel probes are improving our understanding of these biological processes. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Jung-Suk Choi
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; The Center for Gene Regulation in Health and Disease, Cleveland State University, 2351 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, 11000 Euclid Avenue, Cleveland, OH 44106, USA; Red5 Pharmaceuticals, LLC, 10000 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Spector R, Johanson CE. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 2014; 7:3. [PMID: 24410751 PMCID: PMC3896782 DOI: 10.1186/1756-6606-7-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023] Open
Abstract
The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function.
Collapse
Affiliation(s)
- Reynold Spector
- Robert Wood Johnson Medical School, 105 Stone Hill Road, Colts Neck NJ 07722, USA.
| | | |
Collapse
|
10
|
A comparative analysis of intraperitoneal versus intracerebroventricular administration of bromodeoxyuridine for the study of cell proliferation in the adult rat brain. J Neurosci Methods 2011; 201:307-14. [DOI: 10.1016/j.jneumeth.2011.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/05/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
|
11
|
Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 2011; 38:387-411. [PMID: 21954902 DOI: 10.3109/03639045.2011.608191] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT It is well-known fact that blood brain barrier (BBB) hinders the penetrance and access of many pharmacotherapeutic agents to central nervous system (CNS). Many diseases of the CNS remain undertreated and the inability to treat most CNS disorders is not due to the lack of effective CNS drug discovery, rather, it is due to the ineffective CNS delivery. Therefore, a number of nanostructured drug delivery carriers have been developed and explored over the past couple of years to transport the drugs to brain. OBJECTIVE The present review will give comprehensive details of extensive research being done in field of nanostructured carriers to transport the drugs through the BBB in a safe and effective manner. METHODS The method includes both the polymeric- and lipid-based nanocarriers with emphasis on their utility, methodology, advantages, and the drugs which have been worked on using a particular approach to provide a noninvasive method to improve the drug transport through BBB. RESULTS Polymeric- and lipid-based nanocarriers enter brain capillaries before reaching the surface of the brain microvascular endothelial cells without the disruption of BBB. These systems are further modified with specific ligands vectors and pegylation aiming to target and enhance their binding with surface receptors of the specific tissues inside brain and increase long circulatory time which favors interaction and penetration into brain endothelial cells. CONCLUSION This review would give an insight to the researchers working on neurodegenerative and non-neurodegenerative diseases of the CNS including brain tumor.
Collapse
|
12
|
Sierra A, Encinas JM, Maletic-Savatic M. Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci 2011; 5:47. [PMID: 21519376 PMCID: PMC3075882 DOI: 10.3389/fnins.2011.00047] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/23/2011] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.
Collapse
Affiliation(s)
- Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Juan M. Encinas
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| |
Collapse
|
13
|
Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol 2010; 39:186-212. [PMID: 21189316 DOI: 10.1177/0192623310394214] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bordering the ventricular cerebrospinal fluid (CSF) are epithelial cells of choroid plexus (CP), ependyma and circumventricular organs (CVOs) that contain homeostatic transporters for mediating secretion/reabsorption. The distributional pathway ("nexus") of CP-CSF-ependyma-brain furnishes peptides, hormones, and micronutrients to periventricular regions. In disease/toxicity, this nexus becomes a conduit for infectious and xenobiotic agents. The sleeping sickness trypanosome (a protozoan) disrupts CP and downstream CSF-brain. Piperamide is anti-trypanosomic but distorts CP epithelial ultrastructure by engendering hydropic vacuoles; this reflects phospholipidosis and altered lysosomal metabolism. CP swelling by vacuolation may occlude CSF flow. Toxic drug tools delineate injuries to choroidal compartments: cyclophosphamide (vasculature), methylcellulose (interstitium), and piperazine (epithelium). Structurally perturbed CP allows solutes to penetrate the ventricles. There, CSF-borne pathogens and xenobiotics may permeate the ependyma to harm neurogenic stem cell niches. Amoscanate, an anti-helmintic, potently injures rodent ependyma. Ependymal/brain regions near CP are vulnerable to CSF-borne toxicants; this proximity factor links regional barrier breakdown to nearby periventricular pathology. Diverse diseases (e.g., African sleeping sickness, multiple sclerosis) take early root in choroidal, circumventricular, or perivascular loci. Toxicokinetics informs on pathogen, anti-parasitic agent, and auto-antibody distribution along the CSF nexus. CVOs are susceptible to plasma-borne toxicants/pathogens. Countering the physico-chemical and pathogenic insults to the homeostasis-mediating ventricle-bordering cells sustains brain health and fluid balance.
Collapse
|
14
|
Spector R, Johanson CE. Vectorial Ligand Transport Through Mammalian Choroid Plexus. Pharm Res 2010; 27:2054-62. [DOI: 10.1007/s11095-010-0162-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
15
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
16
|
Sherstnev VV, Yurasov VV, Storozheva ZI, Gruden’ MA. The relationship between neurogliogenesis and apoptosis in the brain of adult rats. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5:10. [PMID: 18479516 PMCID: PMC2412840 DOI: 10.1186/1743-8454-5-10] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 05/14/2008] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - John A Duncan
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Petra M Klinge
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Thomas Brinker
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Edward G Stopa
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Gerald D Silverberg
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| |
Collapse
|