1
|
Lloret-Linares C, Daali Y, Abbara C, Carette C, Bouillot JL, Vicaut E, Czernichow S, Declèves X. CYP450 activities before and after Roux-en-Y gastric bypass: correlation with their intestinal and liver content. Surg Obes Relat Dis 2019; 15:1299-1310. [PMID: 31262651 DOI: 10.1016/j.soard.2019.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023]
|
2
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
3
|
Significant effect of age on docetaxel pharmacokinetics in Japanese female breast cancer patients by using the population modeling approach. Eur J Clin Pharmacol 2016; 72:703-10. [PMID: 26905999 DOI: 10.1007/s00228-016-2031-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Docetaxel is frequently used in the treatment of a wide variety of solid tumors, including breast cancer. The aim of this study is to obtain the population pharmacokinetic parameters of docetaxel in Japanese female patients with breast cancer. METHODS Blood samples from 24 patients were collected sequentially before and after docetaxel infusion. Genomic DNA was isolated from the peripheral blood and genotyped for the selected polymorphisms in the candidate genes of drug transporters and metabolizing enzymes. The influence of patient characteristics on the pharmacokinetics of docetaxel was evaluated using the nonlinear-mixed-effect modeling program, NONMEM. As a basis for comparison, the pharmacokinetics of another taxane paclitaxel in 41 separate female patients with breast cancer was calculated. RESULTS A two-compartment model adequately described the pharmacokinetic profiles of docetaxel. The population mean estimates of the total body clearance for patients aged 58 years or less and the central volume of distribution for docetaxel were 32.6 L/h and 5.77 L, respectively. In patients over 58 years, the clearance was 24 % higher than that in the younger patients. No influences of the genotypes examined were noted on the clearance of docetaxel. The clearance of paclitaxel was not affected by patient age. CONCLUSIONS Patients over the age of 58 years showed significantly higher clearance of docetaxel than that in patients aged 58 years or less. Since the clearance of paclitaxel was not affected by the age, it is possible that the pharmacokinetic mechanisms of docetaxel might be specifically affected by age in females.
Collapse
|
4
|
Naito T, Mino Y, Aoki Y, Hirano K, Shimoyama K, Ogawa N, Kagawa Y, Kawakami J. ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis. Clin Chim Acta 2015; 445:79-84. [PMID: 25817604 DOI: 10.1016/j.cca.2015.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND This study aimed to evaluate the blood exposure of and clinical responses to tacrolimus based on genetic variants of CYP3A5 and ABCB1 in patients with rheumatoid arthritis. METHODS Seventy rheumatoid arthritis patients treated with oral tacrolimus once daily were enrolled. Blood concentrations of tacrolimus and its major metabolite 13-O-demethylate at 12h after dosing were determined. The relationships between the tacrolimus pharmacokinetics and efficacy, renal function, and CYP3A5 and ABCB1 genotypes were evaluated. RESULTS Dose-normalized blood concentration of tacrolimus was significantly higher in the CYP3A5*3/*3 group than in the *1 allele carrier group. A lower metabolic ratio of 13-O-demethylate to tacrolimus was observed in the CYP3A5*3/*3 group. The ABCB1 3435TT group had higher dose-normalized blood concentrations of tacrolimus and 13-O-demethylate. The blood tacrolimus concentration was inversely correlated with the estimated glomerular filtration rate (eGFR). ABCB1 C3435T but not CYP3A5 genotype had decreased eGFR. Patients lacking the CYP3A5*3 allele had a higher incidence of tacrolimus withdrawal. CONCLUSION CYP3A5*3 increased the blood exposure of tacrolimus through its metabolic reduction. ABCB1 C3435T led to a higher blood exposure of tacrolimus and its major metabolite. The ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affected renal function in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | - Yasuaki Mino
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Aoki
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Clinical Pharmaceutics and Pharmacy Practice, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Kumi Hirano
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kumiko Shimoyama
- Department of Rheumatology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Noriyoshi Ogawa
- Department of Rheumatology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics and Pharmacy Practice, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Zuo XC, Zhang WL, Yuan H, Barrett JS, Hua Y, Huang ZJ, Zhou HH, Pei Q, Guo CX, Wang JL, Yang GP. ABCB1 Polymorphism and Gender Affect the Pharmacokinetics of Amlodipine in Chinese Patients with Essential Hypertension: A Population Analysis. Drug Metab Pharmacokinet 2014; 29:305-11. [DOI: 10.2133/dmpk.dmpk-13-rg-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Liu YY, Li C, Cui Z, Fu X, Zhang S, Fan LL, Ma J, Li G. The effect of ABCB1 C3435T polymorphism on pharmacokinetics of tacrolimus in liver transplantation: a meta-analysis. Gene 2013; 531:476-88. [PMID: 24042126 DOI: 10.1016/j.gene.2013.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The effect of ABCB1 C3435T SNP on the pharmacokinetics of immunosuppressive drug tacrolimus in different studies was conflicting. So a meta-analysis was employed to study the correlation of ABCB1 C3435T SNP and the pharmacokinetics of tacrolimus at different post-transplantation times. METHOD Several studies about ABCB1 C3435T polymorphism and the pharmacokinetics of tacrolimus were collected through the search on PubMed and the Cochrane Library. After the extraction of pharmacokinetic parameters from these studies, a meta-analysis was performed on the software STATA version 11.0. RESULTS A total of 9 studies were adopted including 558 liver transplant recipients. For the dose of tacrolimus, the subjects with wild-type CC had a significantly higher tacrolimus dose than homozygous mutated genotype TT within 1 week (WMD=0.01 (0.00, 0.02), P=0.014) and the similar result in recipients with heterozygous CT compared with TT after transplantation for 1 month (WMD=0.01 (0.00, 0.02), P=0.002). For the tacrolimus concentration/dose ratio, subjects with CT had higher C/D ratio than those with CC and TT at different post-transplantation times. A subgroup analysis based on different ethnic populations was also carried out. Donors' genotypes were also considered in this meta-analysis. CONCLUSION Through this meta-analysis for the including studies about the pharmacokinetics of tacrolimus and ABCB1 C3435T SNP, several significant associations were obtained. Particularly, the Caucasians showed more significant associations between the C/D ratio and ABCB1 C3435T polymorphism; however, the correlations were not steady at different post-transplantation times.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Health Statistics, School of Public Health, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Heping District, Tianjin 300070, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Genetic variability and haplotype profile of MDR1 in Saudi Arabian males. Mol Biol Rep 2012; 39:10293-301. [PMID: 23053935 DOI: 10.1007/s11033-012-1906-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/30/2012] [Indexed: 01/11/2023]
|
8
|
Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, Inui KI, Katsura T. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 2012; 27:631-9. [PMID: 22673043 DOI: 10.2133/dmpk.dmpk-12-rg-026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the impact of genetic variations in breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (MDR1/ABCB1) on the pharmacokinetics of sunitinib, we carried out a pharmacogenetic study in a clinical setting and pharmacokinetic analysis using Abcg2(-/-), Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice. Nineteen renal cell carcinoma patients were enrolled in this study. The plasma concentrations of sunitinib and its active metabolite were determined and the area under the concentration-time curve (AUC) was calculated. Genetic polymorphisms in ABCG2 (421C>A) and ABCB1 (1236C>T, 2677G>T/A and 3435C>T) were examined. The dose-adjusted AUC(0-24) of sunitinib was significantly higher in patients with a heterozygous variant for ABCG2 421C>A than in wild-type patients (p = 0.02), and one homozygous patient showed the highest dose-adjusted AUC(0-24). The ABCB1 polymorphisms were not associated with the dose-adjusted AUC(0-24). The maximum concentration and AUC(0-4) of sunitinib were significantly higher in Abcg2(-/-), Abcb1a/1b(-/-) and Abcb1a/1b;Abcg2(-/-) mice than wild-type mice when sunitinib was given orally but not intraperitoneally. Incidence of thrombocytopenia and hypertension and poor compliance were associated with the systemic exposure to sunitinib and its active metabolite. These results suggest that the loss of protein expression of ABCG2 by genetic polymorphism is associated with an increase in the systemic exposure to sunitinib and sunitinib-induced toxicity.
Collapse
Affiliation(s)
- Tomoyuki Mizuno
- Department of Pharmacy, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Associations of ABCB1 3435C>T and IL-10-1082G>A polymorphisms with long-term sirolimus dose requirements in renal transplant patients. Transplantation 2012; 92:1342-7. [PMID: 22094953 DOI: 10.1097/tp.0b013e3182384ae2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Sirolimus (SRL) absorption and metabolism are affected by p-glycoprotein-mediated transport and CYP3A enzyme activity, which are further under the influences of cytokine concentrations. This retrospective study determined the associations of adenosine triphosphate-binding cassette, subfamily B, member 1 (ABCB1) 1236C>T, 2677 G>T/A, and 3435C>T, cytochrome P450, family 3, subfamily A, polypeptide 4 (CYP3A4) -392A>G, cytochrome P450, family 3, subfamily A, polypeptide 5 (CYP3A5) 6986A>G and 14690G>A, interleukin (IL)-10 -1082G>A, and tumor necrosis factor (TNF) -308G>A polymorphisms with SRL dose-adjusted, weight-normalized trough concentrations (C/D) at 7 days, and at 1, 3, 6, and 12 months after initiation of SRL. METHODS Genotypes for 86 renal transplant patients who received SRL-based maintenance immunosuppressive therapy were determined using polymerase chain reaction followed by chip-based mass spectrometry. The changes of log-transformed C/D over the days posttransplantation were analyzed using a linear mixed-effects model, with adjustments for body mass index and weight-normalized doses of tacrolimus, prednisone, clotrimazole, and statins. RESULTS ABCB1 3435C>T and IL-10 -1082G>A were significantly associated with log C/D (P=0.0016 and 0.0394, respectively). Mean SRL C/D was 48% higher in patients with ABCB1 3435CT/TT genotype than those with 3435CC genotype, and was 24% higher in IL-10 -1082GG compared with -1082AG/AA. CONCLUSIONS ABCB1 3435C>T and IL-10 -1082G>A were significantly associated with long-term SRL dose requirements. Genetics can play a significant role in SRL dosing and may be useful in therapeutic monitoring of SRL in renal transplantation. Future replication studies are needed to confirm these associations.
Collapse
|
10
|
Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2011; 27:85-105. [PMID: 22123128 DOI: 10.2133/dmpk.dmpk-11-rv-098] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Yu X, Xie H, Wei B, Zhang M, Wang W, Wu J, Yan S, Zheng S, Zhou L. Association of MDR1 gene SNPs and haplotypes with the tacrolimus dose requirements in Han Chinese liver transplant recipients. PLoS One 2011; 6:e25933. [PMID: 22110582 PMCID: PMC3215699 DOI: 10.1371/journal.pone.0025933] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/13/2011] [Indexed: 12/28/2022] Open
Abstract
Background This work seeks to evaluate the association between the C/D ratios (plasma concentration of tacrolimus divided by daily dose of tacrolimus per body weight) of tacrolimus and the haplotypes of MDR1 gene combined by C1236T (rs1128503), G2677A/T (rs2032582) and C3435T (rs1045642), and to further determine the functional significance of haplotypes in the clinical pharmacokinetics of oral tacrolimus in Han Chinese liver transplant recipients. Methodology/Principal Findings The tacrolimus blood concentrations were continuously recorded for one month after initial administration, and the peripheral blood DNA from a total of 62 liver transplant recipients was extracted. Genotyping of C1236T, G2677A/T and C3435T was performed, and SNP frequency, Hardy-Weinberg equilibrium, linkage disequilibrium, haplotypes analysis and multiple testing were achieved by software PLINK. C/D ratios of different SNP groups or haplotype groups were compared, with a p value<0.05 considered statistically significant. Linkage studies revealed that C1236T, G2677A/T and C3435T are genetically associated with each other. Patients carrying T-T haplotype combined by C1236T and G2677A/T, and an additional T/T homozygote at either position would require higher dose of tacrolimus. Tacrolimus C/D ratios of liver transplant recipients varied significantly among different haplotype groups of MDR1 gene. Conclusions Our studies suggest that the genetic polymorphism could be used as a valuable molecular marker for the prediction of tacrolimus C/D ratios of liver transplant recipients.
Collapse
Affiliation(s)
- Xiaobo Yu
- Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Bajin Wei
- Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Min Zhang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Wang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Yan
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (SZ); (LZ)
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, Zhejiang, China
- * E-mail: (SZ); (LZ)
| |
Collapse
|
12
|
Moons T, de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 2011; 12:1193-211. [PMID: 21843066 DOI: 10.2217/pgs.11.55] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane transport protein P-glycoprotein (P-gp) is an interesting candidate for individual differences in response to antipsychotics. To present an overview of the current knowledge of P-gp and its interaction with second-generation antipsychotics (SGAs), an internet search for all relevant English original research articles concerning P-gp and SGAs was conducted. Several SGAs are substrates for P-gp in therapeutic concentrations. These include amisulpride, aripiprazole, olanzapine, perospirone, risperidone and paliperidone. Clozapine and quetiapine are not likely to be substrates of P-gp. However, most antipsychotics act as inhibitors of P-gp, and can therefore influence plasma and brain concentrations of other substrates. No information was available for sertindole, ziprasidone or zotepine. Research in animal models demonstrated significant differences in antipsychotic brain concentration and behavior owing to both P-gp knockout and inhibition. Results in patients are less clear, as several external factors have to be accounted for. Patients with polymorphisms which decrease P-gp functionality tend to perform better in clinical settings. There is some variability in the findings concerning adverse effects, and no definitive conclusions can be drawn at this point.
Collapse
Affiliation(s)
- Tim Moons
- University Psychiatric Centre, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
13
|
de Wildt SN, van Schaik RHN, Soldin OP, Soldin SJ, Brojeni PY, van der Heiden IP, Parshuram C, Nulman I, Koren G. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol 2011; 67:1231-41. [PMID: 21698374 PMCID: PMC3214266 DOI: 10.1007/s00228-011-1083-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
Purpose In children, data on the combined impact of age, genotype, and disease severity on tacrolimus (TAC) disposition are scarce. The aim of this study was to evaluate the effect of these covariates on tacrolimus dose requirements in the immediate post-transplant period in pediatric kidney and liver recipients. Methods Data were retrospectively collected describing tacrolimus disposition, age, CYP3A5 and ABCB1 genotype, and pediatric risk of mortality (PRISM) scores for up to 14 days post-transplant in children receiving liver and renal transplants. Initial TAC dosing was equal in all patients and adjusted using therapeutic drug monitoring. We determined the relationship between covariates and tacrolimus disposition. Results Forty-eight kidney and 42 liver transplant recipients (median ages 11.5 and 1.5 years, ranges 1.5–17.7 and 0.05–14.8 years, respectively) received TAC post-transplant. In both transplant groups, younger children (<5 years) needed higher TAC doses than older children [kidney: 0.15 (0.07–0.35) vs. 0.09 (0.02–0.20) mg/kg/12h, p = 0.046, liver: 0.12 (0.04–0.32) vs. 0.09 (0.01–0.18) mg/kg/12h, p = 0.038]. In kidney but not liver transplants, CYP3A5 expressors needed significantly higher TAC doses than nonexpressors [0.15 (0.07–0.20) vs. 0.09 (0.02–0.35) mg/kg/12h, P = 0.001]. In these patients, age and CYP3A5 genotype were independently associated with TAC dosing requirement. In liver, but not kidney transplant patients, homozygous ABCB1 T-T-T haplotype carriers needed higher TAC doses than noncarriers [0.26 (0.15–0.32) vs. 0.11 (0.01–0.25) mg/kg/12h, p = 0.013]. Conclusion CYP3A5 genotype may explain variation in tacrolimus disposition early after transplant in pediatric kidney recipients, independent of age-related variation. In contrast, in pediatric liver recipients, variation in tacrolimus disposition appears related to age and ABCB1 genotype. These findings illustrate the importance of the interplay among age, genotype, and transplant organ on tacrolimus disposition.
Collapse
Affiliation(s)
- Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Sk3140, Dr. Molewaterplein 60, 3015 GJ, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oswald S, Terhaag B, Siegmund W. In vivo probes of drug transport: commonly used probe drugs to assess function of intestinal P-glycoprotein (ABCB1) in humans. Handb Exp Pharmacol 2011:403-447. [PMID: 21103977 DOI: 10.1007/978-3-642-14541-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Intestinal P-glycoprotein (P-gp, ABCB1) may significantly influence drug absorption and elimination. Its expression and function is highly variable, regio-selective and influenced by genetic polymorphisms, drug interactions and intestinal diseases. An in vivo probe drug for intestinal P-gp should a registered, safe and well tolerated nonmetabolized selective substrate with low protein binding for which P-gp is rate-limiting during absorption. Other P-gp dependent processes should be of minor influence. The mechanism(s) and kinetics of intestinal uptake must be identified and quantified. Moreover, the release properties of the dosage form should be known. So far, the cardiac glycoside digoxin and the ß₁-selective blocker talinolol have been used in mechanistic clinical studies, because they meet most of these criteria. Digoxin and talinolol are suitable in vivo probe drugs for intestinal P-gp under the precondition, that they are used as tools in carefully designed pharmacokinetic studies with adequate biometrically planning of the sample size and that several limitations are considered in interpreting and discussion of the study results.
Collapse
Affiliation(s)
- Stefan Oswald
- Department of Clinical Pharmacology, University of Greifswald, Greifswald, Germany.
| | | | | |
Collapse
|
15
|
Hawwa AF, McElnay JC. Impact of ATP-binding cassette, subfamily B, member 1 pharmacogenetics on tacrolimus-associated nephrotoxicity and dosage requirements in paediatric patients with liver transplant. Expert Opin Drug Saf 2010; 10:9-22. [PMID: 20629603 DOI: 10.1517/14740338.2010.505600] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD Tacrolimus is the most commonly used immunosuppressive agent following solid-organ transplantation in children. Its clinical use, however, is complicated by side effects (mainly nephrotoxicity), narrow therapeutic index and pharmacokinetic variability which can result in an increased risk of treatment failure or toxicity. Studies examining interindividual differences in the expression of the ABCB1 (ATP-binding cassette, subfamily B, member 1) gene (which encodes the drug transporter, P-gp) and its genetic polymorphisms have attempted to elucidate variations in tacrolimus response and disposition in children. AREAS COVERED IN THIS REVIEW This review explores pharmacogenetic knowledge developed over the last decade regarding the impact of ABCB1 polymorphisms on tacrolimus toxicity and dosage requirements in children. WHAT THE READER WILL GAIN A better understanding of the role of ABCB1 genetic polymorphisms (and corresponding haplotypes) and ABCB1 expression levels in various tissues and organs on tacrolimus outcomes in children with liver transplant. TAKE HOME MESSAGE Pharmacogenetics offers significant potential for optimising tacrolimus use. ABCB1 donor genotypes and ABCB1 expression level in the intestine and leukocytes may be useful in dosage selection. Large prospective studies are, however, required to further explore the potential of genetic testing in identifying children who are at risk of toxicity and to better individualise tacrolimus therapy.
Collapse
Affiliation(s)
- Ahmed F Hawwa
- Queen's University Belfast, Medical Biology Centre, School of Pharmacy, Clinical and Practice Research Group, 97 Lisburn Road, Belfast, UK
| | | |
Collapse
|
16
|
Perera MA. The missing linkage: what pharmacogenetic associations are left to find in CYP3A? Expert Opin Drug Metab Toxicol 2010; 6:17-28. [PMID: 19968573 DOI: 10.1517/17425250903379546] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD An enormous amount of drugs and endogenous substrates are metabolized by the enzymes encoded in the CYP3A gene cluster, making variation at this locus of utmost importance in the field of pharmacogenetics. However, the identification of genetic variation that contributes to the wide phenotypic variability at this locus has been elusive. While dozens of studies have investigated the effects of coding variants, none have found the definitive answer to what variant or variants explain the distribution of enzyme activity and clinical effects seen with the drug metabolized by these genes. AREAS COVERED IN THIS REVIEW This review highlights the recent pharmacogenetic work at the CYP3A locus, in particular studies on known functional variants in CYP3A4 and CYP3A5. In addition, common pharmacogenetic strategies as well as considerations specific to the CYP3A locus are discussed. WHAT THE READER WILL GAIN The reader will gain a greater understanding of the complexities involved in studying the CYP3A locus, population differences that may affect pharmacogenetic studies at this locus and the importance of variation that affect gene regulation. TAKE HOME MESSAGE More innovative and comprehensive methods to assay this region are needed, with particular attention paid to the role of gene regulation and non-coding sequence.
Collapse
Affiliation(s)
- Minoli A Perera
- University of Chicago, Section of Genetic Medicine and Committee on Clinical Pharmacology and Pharmacogenomics, Division of Biological Sciences, Department of Medicine, Chicago, IL 60637, USA.
| |
Collapse
|