1
|
Kim JE, Lee DY, Choi J, Hong YD, Nam J, Park WS, Shim SM. Spectral and mass characterization of kinetic conversion from retinoids to retinoic acid in an in vitro 3-D human skin equivalent model. Eur J Pharm Sci 2024; 198:106784. [PMID: 38705422 DOI: 10.1016/j.ejps.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (μM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the CO maximum absorbance occurred between 1600∼1800 cm-1 and was greater from ROL than that from RAL and RP, indicating conjugation of R-OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) - total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 μM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 μM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.
Collapse
Affiliation(s)
- Jeong-Eun Kim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, South Korea
| | - Da-Yeon Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, South Korea
| | - Joonho Choi
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Yong-Deok Hong
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Jin Nam
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Innovation Center, 1920, Yonggu-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Seoul, South Korea.
| |
Collapse
|
2
|
Salas T, Bordes C, Arquier D, Caillier L, Mandica F, Bolzinger MA. Effect of massage on retinol skin penetration. Int J Pharm 2023:123106. [PMID: 37279867 DOI: 10.1016/j.ijpharm.2023.123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Topical administration of active substances may be promoted by optimizing not only the vehicle formulation but also the application protocol. The formulation aspects are widely studied in the literature while a few works are dedicated to the development of application methods. In this context, we studied an application protocol usable as a part of skincare routine by investigating the effect of massage on the skin penetration of retinol. Retinol is a lipophilic molecule widely used as an anti-ageing firming agent in cosmetic formulations. Massage was applied to pig skin explants mounted to Franz diffusion cells after or before the deposit of the retinol-loaded formulation. Thetype of skin massage (roll or rotary type) and its duration were varied.The massage protocol had a significant influence on retinol skin penetration. Due to its highly lipophilic character, retinol accumulated into the stratum corneum but, depending on the massage protocol, a significant retinol concentration was obtained after 4 hours in epidermis and dermis layers. Results showed that the roll-type massage was significantly more efficient than the rotary process that exhibited little effect on retinol cutaneous penetration. Such results could be interesting for the development of massage devices in association with cosmetic formulations.
Collapse
Affiliation(s)
- Tiffanie Salas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 Bd Du 11 Novembre 1918, 69622, Villeurbanne, France; Groupe SEB, Campus SEB, 112, Chemin Du Moulin Carron, Ecully, France.
| | - Claire Bordes
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 Bd Du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Delphine Arquier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 Bd Du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Laurent Caillier
- Groupe SEB, Campus SEB, 112, Chemin Du Moulin Carron, Ecully, France
| | - Franck Mandica
- Groupe SEB, Campus SEB, 112, Chemin Du Moulin Carron, Ecully, France
| | - Marie-Alexandrine Bolzinger
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 Bd Du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
3
|
Hazt B, Pereira Parchen G, Fernanda Martins do Amaral L, Rondon Gallina P, Martin S, Hess Gonçalves O, Alves de Freitas R. Unconventional and conventional Pickering emulsions: Perspectives and challenges in skin applications. Int J Pharm 2023; 636:122817. [PMID: 36905974 DOI: 10.1016/j.ijpharm.2023.122817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Pickering emulsions are free from molecular and classical surfactants and are stabilized by solid particles, creating long-term stability against emulsion coalescence. Additionally, these emulsions are both environmentally and skin-friendly, creating new and unexplored sensorial perceptions. Although the literature mostly describes conventional emulsions (oil-in-water), there are unconventional emulsions (multiple, oil-in-oil and water-in-water) with excellent prospects and challenges in skin application as oil-free systems, permeation enhancers and topical drug delivery agents, with various possibilities in pharmaceutical and cosmetic products. However, up to now, these conventional and unconventional Pickering emulsions are not yet available as commercial products. This review brings to the discussion some important aspects such as the use of phases, particles, rheological and sensorial perception, as well as current trends in the development of these emulsions.
Collapse
Affiliation(s)
- Bianca Hazt
- Chemistry Department, Universidade Federal do Paraná (UFPR), R. Coronel F. H. dos Santos, 210, Curitiba - 81531-980, PR, Brazil.
| | - Gabriela Pereira Parchen
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| | | | - Patrícia Rondon Gallina
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil
| | - Sandra Martin
- Mackenzie School of Medicine, R. Padre Anchieta, 2770, Curitiba - 80730-000, PR, Brazil
| | - Odinei Hess Gonçalves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina Maria Dos Santos, 1233, Campo Mourão - 87301-899, PR, Brazil.
| | - Rilton Alves de Freitas
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| |
Collapse
|
4
|
Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022; 21:2772-2819. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900-1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana, India.,Division of Biotechnology, Cytogene Research & Development, Lucknow, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Satish Chand Kushwaha
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
In Vitro Skin Delivery of Griseofulvin by Layer-by-Layer Nanocoated Emulsions Stabilized by Whey Protein and Polysaccharides. Pharmaceutics 2022; 14:pharmaceutics14030554. [PMID: 35335930 PMCID: PMC8949154 DOI: 10.3390/pharmaceutics14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Griseofulvin is a poorly water-soluble drug administered orally to treat topical fungal infections of the skin and hair. However, oral administration leads to poor and unpredictable drug pharmacokinetics. Additionally, griseofulvin is unstable in the presence of light. A layer-by-layer (LbL) nanocoating approach was employed to curb these shortcomings by stabilizing emulsions, lyophilized emulsions, and reconstituted emulsions with a layer each of whey protein, and either hyaluronic acid, amylopectin, or alginic acid, which captured the drug. The coating materials are biological, environmentally benign, and plentiful. Photostability studies indicated that the LbL particles afforded 6 h of protection of the topical application. In vitro absorption studies showed that griseofulvin concentrated preferentially in the stratum corneum, with virtually no transdermal delivery. Therefore, LbL-nanocoated emulsions, lyophilized particles, and reconstituted lyophilized emulsions can produce a viable topical delivery system to treat superficial fungal infections.
Collapse
|
6
|
Peito S, Peixoto D, Ferreira-Faria I, Margarida Martins A, Margarida Ribeiro H, Veiga F, Marto J, Cláudia Santos A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int J Pharm 2022; 615:121455. [PMID: 35031412 DOI: 10.1016/j.ijpharm.2022.121455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Collapse
Affiliation(s)
- Sofia Peito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Mishra P, Handa M, Ujjwal RR, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces 2021; 208:112050. [PMID: 34418723 DOI: 10.1016/j.colsurfb.2021.112050] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
In recent times, more than 50 % of the global population is facing hair-related issues (alopecia) which is seen mostly amongst the people in the age group of 30-40 years. The conventional topical dosage forms available in the market falls short in effectively managing alopecia. Despite various advancements in topical dosage forms, it is still disposed to limited clinical application and provides poor penetration of drug molecules into the skin. The exact etiology of alopecia is still unknown and various researchers link lifestyle, hereditary, and auto immune-based events with its existence. Nanoparticulate-based delivery are hence brought in use to enhance the permeability properties of the drug. In comparison to conventional methods nanotechnology-based drug delivery system tames drug molecules to a specific site with much better efficacy. This review is engrossed in the journey and role of nano technological-based drug delivery in the management of alopecia and its clinical application.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Rewati R Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India
| | - Vanshikha Singh
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., 226002, India.
| |
Collapse
|
8
|
Jun SH, Kim H, Lee H, Song JE, Park SG, Kang NG. Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery. Polymers (Basel) 2021; 13:826. [PMID: 33800335 PMCID: PMC7962639 DOI: 10.3390/polym13050826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Retinol has been widely used as an anti-wrinkle active ingredient in cosmetic fields. However, the oxidation of retinol by air was one of the critical problems for application in the skincare field. In this study, Retinol-loaded lipid nanocarriers were prepared via the vacuum emulsification method to increase the stability of retinol vulnerable to air and optimized encapsulation conditions and to increase the penetration efficiency into skin. Optimizing the components of lipid nanocarriers, gradients of carbon chain C8-22 using various lipid species which made the amorphous structure and enough spaces to load retinol inside the capsules were estimated from the lower enthalpy change and peak shift in DSC analysis. The vacuum-assisted lipid nanocarriers (VLN) could help suppress oxidation, which could have advantages to increase the thermal stability of retinol. The retinol-loaded VLN (VLN-ROL) had narrow size distribution under 0.3 PDI value, under 200 nm scaled particle size, and fully negative surface charge of about -50 mV for the electrostatic repulsion to avoid aggregation phenomenon among the lipid nanoparticles. It maintained 90% or more retinol concentration after 4 weeks of storage at 25, 40 and 50 °C and kept stable. The VLN-ROL-containing cream showed improved penetration efficiency applied to porcine skins compared to the commercial retinol 10S from BASF. The total amount of retinol into the skin of VLN-ROL (0.1% of retinol) was enhanced by about 2.2-fold (2.86 ± 0.23 μg) higher than that in 0.1% of bare retinol (about 1.29 ± 0.09 μg). In addition, applied on a 3D Human skin model, the epidermal thickness and the relative percentage of dermal collagen area effectively increased compared to the control and retinol, respectively. Additionally, the level of secreted IL-1α was lower and epidermal damage was weaker than commercial product A. This retinol-loaded lipid nanocarrier could be a potentially superior material for cosmetics and biomedical research.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Korea; (H.K.); (H.L.); (J.E.S.); (S.G.P.)
| | | | | | | | | | - Nea-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Korea; (H.K.); (H.L.); (J.E.S.); (S.G.P.)
| |
Collapse
|
9
|
Park J, Kim YC. Topical delivery of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles using microneedles for keloid treatment. Drug Deliv Transl Res 2020; 11:205-213. [PMID: 32383003 DOI: 10.1007/s13346-020-00781-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Keloids are induced by skin injuries such as surgeries, skin piercings, burns, and trauma. The intra-lesional injection of 5-fluorouracil (5-FU) is a promising therapy to treat keloid. However, local 5-FU injections have caused several side effects such as pain at administration and hyperpigmentation. This study suggests a safer and more effective 5-FU delivery system. We used microneedles to treat keloid because this method has the feasibility of self-administration without pain. In this study, 5-FU-loaded carboxymethyl chitosan (CMC) nanoparticles were prepared and characterized by various analytical methods and then coated on stainless solid microneedles. The blank CMC nanoparticles caused an increase in cell viability on human normal fibroblasts to 150%. In particular, the 5-FU-loaded CMC nanoparticles showed a significant inhibitory effect on the human keloid fibroblast to 16%. The intercellular uptake of the 5-FU-loaded CMC nanoparticles was observed on both human normal and keloid fibroblasts by using a confocal microscope. In addition, it was found that the nanoparticles showed an inhibition of TGF-β1 by ELISA. For topical drug delivery, it was confirmed that the nanoparticles coated onto the microneedles were dissolved and diffused at the administration site in the porcine dorsal skin model. According to these results, the suggested microneedle-mediated drug delivery system not only inhibits the human keloid fibroblasts by delivering drugs effectively into the keloids but also has the feasibility to self-administer without pain. Therefore, this new system including 5-FU-loaded CMC nanoparticles and microneedles has the potential to treat keloid scars. Graphical abstract.
Collapse
Affiliation(s)
- Juhyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
11
|
Lu X, Li C, Huang Q. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. Int J Biol Macromol 2019; 139:917-924. [PMID: 31401275 DOI: 10.1016/j.ijbiomac.2019.08.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
To investigate the encapsulation and oral delivery efficiency of milled starch particles stabilized Pickering emulsions for lipophilic bioactive compounds, in vitro digestion model coupled with Caco-2 cells models were used. Physicochemical and biological properties of curcumin encapsulated Pickering emulsions were analyzed regarding to emulsion structure, curcumin retention, in vitro digestion, in vitro anti-proliferate ability and cellular uptake. Milled starch particles stabilized Pickering emulsion system was able to protect curcumin against harsh gastric conditions. Around 80% of the encapsulated curcumin was retained after 2 h of simulated gastric digestion. By being encapsulated in Pickering emulsion, the bioaccessibility of curcumin was increased from 11% for curcumin in bulk oil phase to 28% under simulated intestinal digestion process. The resulting curcumin-loaded micelle phase from digested emulsion exhibited significant anti-cancer ability and enhanced cellular uptake. This research provides an exploratory study on the possible future application of milled starch particles stabilized Pickering emulsions as nutraceutical delivery vehicles in the creation of novel functional foods.
Collapse
Affiliation(s)
- Xuanxuan Lu
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Rafanan R, Rousseau D. Effect of shear and interfacial fat crystallization on release of water-soluble dye from water-in-oil emulsions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
UV and storage stability of retinol contained in oil-in-water nanoemulsions. Food Chem 2018; 272:404-410. [PMID: 30309562 DOI: 10.1016/j.foodchem.2018.08.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/01/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
Abstract
This study was performed to examine the stability of retinol contained within oil-in-water (O/W) emulsions under UV and during storage at different temperatures. O/W emulsions were prepared using different emulsifiers and oil concentrations. The stability of the retinol contained in the O/W emulsions was investigated by measuring the percentage of residual retinol in the samples after UV exposure and storage at different temperatures (4, 25, and 40 °C). The oil concentration of the emulsion had a greater impact on UV stability than the type of emulsifier used, whereas the storage stability at different temperatures was affected by both the choice of emulsifier and the oil concentration. The storage stability of the retinol contained in the O/W emulsions may be related to the lipid oxidation properties of the emulsions rather than the latter's physical stability. Experiments with EDTA and different oil types were performed to confirm this theory.
Collapse
|
14
|
Shields CW, White JP, Osta EG, Patel J, Rajkumar S, Kirby N, Therrien JP, Zauscher S. Encapsulation and controlled release of retinol from silicone particles for topical delivery. J Control Release 2018; 278:37-48. [PMID: 29604311 DOI: 10.1016/j.jconrel.2018.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm-2 s-1/2). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We also found a decrease in the production of interleukin-1α (IL-1α) compared to formulations containing the Microsponge particles, suggesting lower irritation levels and supporting the findings from the human study. Finally, we show that the silicone particles can encapsulate other AIs, including betamethasone, N, N-diethyl-meta-toluamide (DEET), homosalate and ingenol mebutate, establishing these particles as a true platform technology.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - John P White
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Erica G Osta
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; NSF Partnerships for Research and Education in Materials, Texas State University, San Marcos, TX 78666, USA
| | - Jerishma Patel
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Shashank Rajkumar
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Nickolas Kirby
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA
| | | | - Stefan Zauscher
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Ray SS, Mosangi D, Pillai S. Layered Double Hydroxide-Based Functional Nanohybrids as Controlled Release Carriers of Pharmaceutically Active Ingredients. CHEM REC 2018; 18:913-927. [PMID: 29316225 DOI: 10.1002/tcr.201700080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/22/2017] [Indexed: 11/06/2022]
Abstract
The chemical stability, degradation and penetration ability of pharmaceutically active ingredients in topical formulations are the greatest challenges because of problems with the protection of actives for long times and with delivery. Therefore, the development of unique and efficient substrate material is vital for their protection and controlled drug release. Layered double hydroxides (LDHs) known as hydrotalcite like compounds possess positive charges due to isomorphic substitutions, which are counterbalanced by hydrated exchangeable anions located in the interlayer region. Some of the active ingredient molecules can be intercalated into the inner region of the LDHs through ionic bonding, hydrogen bonding or van der Waals interaction to form nanohybrids, which are more potent for their protection and controlled-release. This account focuses on our recent research efforts and key scientific and technical challenges in the development of LDH based nanohybrids for commercial use in advanced controlled release carriers of active ingredients in topical formulations.
Collapse
Affiliation(s)
- Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Applied Chemistry, University of Johannesburg, Droonfontein, 2028, Johannesburg, South Africa
| | - Damodar Mosangi
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Applied Chemistry, University of Johannesburg, Droonfontein, 2028, Johannesburg, South Africa.,AMKA Products Pty Limited, Innovation Building, 14 Ellman Street, Sunderland Ridge, Centurion, 0157, Pretoria, South Africa
| | - Sreejarani Pillai
- DST-CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
16
|
Miyazaki H, Inasawa S. Drying kinetics of water droplets stabilized by surfactant molecules or solid particles in a thin non-volatile oil layer. SOFT MATTER 2017; 13:8990-8998. [PMID: 29160885 DOI: 10.1039/c7sm01989k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have investigated drying of water droplets stabilized by solid particles or surfactant molecules in a thin oil layer. The surfactant-stabilized droplets isotropically shrink, whereas the droplets stabilized by spherical particles severely deform during drying because of buckling of the particulate shells. However, buckling of the shells hardly affects droplet drying. The drying times for complete evaporation are almost the same for water droplets with the same initial diameter and the drying time is independent of the type of surface stabilizer (particles or surfactant). The drying kinetics of the water droplets is well described by mathematical models, in which diffusion of water molecules in the oil phase to the oil-air interface is proposed as the rate-determining process. Droplets with a diameter comparable with the thickness of the oil layer shrink faster than small droplets because of the short diffusion length from the water droplets to the oil-air interface. We also investigated drying of water droplets stabilized by plate-like mica particles. The droplets also buckled but larger shells of mica particles remained compared with those of spherical particles. In addition, a longer drying time is necessary for some droplets stabilized by mica particles. These results indicate the possible effect of the particle morphology on the buckling and drying kinetics of particle-stabilized water droplets.
Collapse
Affiliation(s)
- Hayato Miyazaki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | |
Collapse
|
17
|
Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int J Pharm 2017; 531:134-142. [PMID: 28802793 DOI: 10.1016/j.ijpharm.2017.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.
Collapse
|
18
|
Bala V, Rao S, Prestidge CA. Facilitating gastrointestinal solubilisation and enhanced oral absorption of SN38 using a molecularly complexed silica-lipid hybrid delivery system. Eur J Pharm Biopharm 2016; 105:32-9. [DOI: 10.1016/j.ejpb.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023]
|
19
|
Marto J, Ascenso A, Simoes S, Almeida AJ, Ribeiro HM. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin Drug Deliv 2016; 13:1093-107. [DOI: 10.1080/17425247.2016.1182489] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Simoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
Hirun N, Tantishaiyakul V, Sangfai T, Rugmai S, Soontaranon S. Nano-structure, phase transition and morphology of gallic acid and xyloglucan hydrogel. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1604-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Pachioni-Vasconcelos JDA, Lopes AM, Apolinário AC, Valenzuela-Oses JK, Costa JSR, Nascimento LDO, Pessoa A, Barbosa LRS, Rangel-Yagui CDO. Nanostructures for protein drug delivery. Biomater Sci 2016; 4:205-18. [DOI: 10.1039/c5bm00360a] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanostructured systems, such as nanoemulsions and polymersomes, are important tools to develop safe and effective therapeutic protein preparations.
Collapse
Affiliation(s)
| | - André Moreni Lopes
- Department of Biochemical and Pharmaceutical Technology
- School of Pharmaceutical Sciences
- University of São Paulo
- Brazil
| | | | | | | | - Laura de Oliveira Nascimento
- Department of Biochemistry and Tissue Biology
- Institute of Biology
- University of Campinas
- Brazil
- Faculty of Pharmaceutical Sciences
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology
- School of Pharmaceutical Sciences
- University of São Paulo
- Brazil
| | | | | |
Collapse
|
22
|
Mosangi D, Kesavan Pillai S, Moyo L, Ray SS. Inorganic layered double hydroxides as a 4-hexyl resorcinol delivery system for topical applications. RSC Adv 2016. [DOI: 10.1039/c6ra19195a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the hydrophobic even skin tone active, 4-hexylresorcinol is intercalated into a Zn–Al layered double hydroxide by co-precipitation method and used as controlled release ingredient in a skin care formulation.
Collapse
Affiliation(s)
- Damodar Mosangi
- DST-CSIR National Centre for Nanostructured Materials
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
- Department of Applied Chemistry
| | - Sreejarani Kesavan Pillai
- DST-CSIR National Centre for Nanostructured Materials
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| | - Lumbidzani Moyo
- DST-CSIR National Centre for Nanostructured Materials
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials
- Council for Scientific and Industrial Research
- Pretoria 0001
- South Africa
- Department of Applied Chemistry
| |
Collapse
|
23
|
Kim KH, Lim DG, Lim JY, Kim NA, Park SH, Cho JH, Shin BS, Jeong SH. Chemical stability and in vitro and clinical efficacy of a novel hybrid retinoid derivative, bis-retinamido methylpentane. Int J Pharm 2015; 495:93-105. [PMID: 26325317 DOI: 10.1016/j.ijpharm.2015.08.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
The anti-aging agent, retinol, has fewer side effects and similar biological activity compared to retinoic acid. However, retinol becomes unstable when exposed to light and heat. A novel hybrid retinoid derivative, bis-retinamido methylpentane (RS-2A), was newly developed to overcome the limitations. This study evaluated the chemical stability of RS-2A under thermal and light conditions by examining degradation profiles, and assessed the in vitro biological activity, cytotoxicity, and clinical efficacy. Chemical stability and degradation profiles were investigated with HPLC and LC-MS. Especially, photo-stability of RS-2A was analyzed under various conditions, such as change of physical state and concentration, different solvents, and various excipients. For analyses of cellular activity and cytotoxicity, human dermal fibroblasts were cultured with RS-2A. To evaluate the safety and efficacy of the compound with the cellular results, RS-2A was applied to women who had moderate to severe wrinkles at the periorbital region. All of the experiments were conducted with retinol as a reference. RS-2A was more stable than retinol to thermal conditions, especially in solution. Both RS-2A and retinol were unstable to light, but RS-2A showed enhanced photo-stability with regard to concentration, more polar solvent, and addition of proper excipients. RS-2A exhibited decreased cytotoxicity and enhanced effects on collagen synthesis compared with retinol. In a clinical study, a 4-week treatment with RS-2A significantly improved the appearance of periorbital wrinkles without any side effects. The results indicate that RS-2A might have potential as an anti-aging agent for cosmeceutical preparations because of its enhanced chemical stability, biological activity, safety, and clinical efficacy.
Collapse
Affiliation(s)
- Ki Hyun Kim
- College of Pharmacy, Dongguk University, Gyeonggi 410-820, Republic of Korea
| | - Dae Gon Lim
- College of Pharmacy, Dongguk University, Gyeonggi 410-820, Republic of Korea
| | - Jun Yeul Lim
- College of Pharmacy, Dongguk University, Gyeonggi 410-820, Republic of Korea
| | - Nam Ah Kim
- College of Pharmacy, Dongguk University, Gyeonggi 410-820, Republic of Korea
| | - So-Hyun Park
- Coway Cosmetics R&D Center, Seoul 153-803, Republic of Korea
| | - Jin Hun Cho
- Coway Cosmetics R&D Center, Seoul 153-803, Republic of Korea
| | - Beom Soo Shin
- College of Pharmacy, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University, Gyeonggi 410-820, Republic of Korea.
| |
Collapse
|
24
|
Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions. Colloids Surf B Biointerfaces 2015; 135:472-480. [DOI: 10.1016/j.colsurfb.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/31/2015] [Accepted: 08/02/2015] [Indexed: 11/18/2022]
|
25
|
Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM. Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS NANO 2015; 9:7775-82. [PMID: 26083534 PMCID: PMC5047390 DOI: 10.1021/acsnano.5b01696] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacterial biofilms are widely associated with persistent infections. High resistance to conventional antibiotics and prevalent virulence makes eliminating these bacterial communities challenging therapeutic targets. We describe here the fabrication of a nanoparticle-stabilized capsule with a multicomponent core for the treatment of biofilms. The peppermint oil and cinnamaldehyde combination that comprises the core of the capsules act as potent antimicrobial agents. An in situ reaction at the oil/water interface between the nanoparticles and cinnamaldehyde structurally augments the capsules to efficiently deliver the essential oil payloads, effectively eradicating biofilms of clinically isolated pathogenic bacteria strains. In contrast to their antimicrobial action, the capsules selectively promoted fibroblast proliferation in a mixed bacteria/mammalian cell system making them promising for wound healing applications.
Collapse
Affiliation(s)
- Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryan F. Landis
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Akash Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rajesh Ramanathan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
- Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory, School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001, Australia
| | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeffrey A. Boerth
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:175. [PMID: 25825320 DOI: 10.1007/s10856-015-5487-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Liposomal carriers for topical drug delivery have been studied since the 1980s and have evoked a considerable interest. However, the conventional liposomes do not deeply penetrate into the skin and remain confined to the outer layer of SC. In order to increase skin targeting of ketoconazole (KCZ), a hydrophobic broad-spectrum antifungal agent, this study describes novel lipid vesicles as nano-carriers for topical delivery. In this paper, lipid vesicular systems including conventional liposomes (CL), ethosomes, deformable liposomes (DL) and ethanol-containing deformable liposomes (DEL) were prepared as nano-carriers for KCZ, respectively. Sodium dodecyl sulfate [SDS, 0.08 % (W/V)] was used as edge activator for DL and DEL preparation. Characterization of the vesicles was based on particle size, zeta potential, entrapment efficiency and transmission electron microscopy (TEM). In addition, in vitro permeation profile was obtained using vertical diffusion Franz cells by porcine skin. The in vivo accumulation of KCZ was also evaluated in rat skin. Confocal microscopy was performed to visualize the penetration of fluorescently labeled vesicles into skin. All of the lipid vesicles showed almost spherical structures with low polydispersity index (PDI < 0.3) and nano-metric size (no more than 160 nm). The results demonstrated that DEL dramatically improved both in vitro and in vivo skin deposition compared to the CLs (P < 0.05), which was further confirmed by confocal laser scanning microscopy study. In vivo pharmacodynamic studies showed DEL improved antifungal activity against Candida albicans in shorter duration of time. Therefore, based on present study, the novel nano-carrier DEL capable of enhancing skin target effect and forming a micro drug-depot could serve as an effective skin targeting delivery for KCZ as an anti-fungal agent in local therapy.
Collapse
Affiliation(s)
- Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Klaewklod A, Tantishaiyakul V, Hirun N, Sangfai T, Li L. Characterization of supramolecular gels based on β-cyclodextrin and polyethyleneglycol and their potential use for topical drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:242-50. [PMID: 25746267 DOI: 10.1016/j.msec.2015.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
Novel gels were prepared by blending β-cyclodextrin and polyethyleneglycol (PEG) in the presence of K2CO3. The objective of this study was thus to characterize the gels using rheology, modulated temperature differential scanning calorimetry (MTDSC), turbidity measurements, and hot stage microscopy, and then investigate the potential use of the gel for topical drug delivery. Two types of supramolecular gels, GelL and GelH were prepared at a low temperature (below 50 °C) and at a high temperature (above 70 °C), respectively. Both gels were thermo-reversible. Upon heating, GelL could turn to GelH. Nevertheless, upon cooling, GelH that was more stable than GelL precipitated and GelL could not be reformed. GelL may form through simple complexation of polyethyleneglycol (PEG) with β-cyclodextrin in the presence of K2CO3. However, GelH may form a specific complex or a pseudopolyrotaxane gel. For pharmaceutical application, GelL was investigated instead of GelH because the forming temperature of this gel was close to the human body temperature. The interactions among diclofenac sodium (DS), a model drug, and the components of the gel were examined using FTIR. These interactions may include ionic attraction and hydrogen bonds between the carboxylate groups of DS and the hydroxyl groups of PEG or β-cyclodextrin and probably also the inclusion of the aromatic ring of DS into the cavity of β-cyclodextrin. Furthermore, the release and permeation of diclofenac from GelL were significantly greater than those from a commercial gel. Therefore, GelL may be useful for the topical delivery of drugs.
Collapse
Affiliation(s)
- Amornrat Klaewklod
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Vimon Tantishaiyakul
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Nanotec, PSU Center of Excellence for Drug Delivery System, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.
| | - Namon Hirun
- Theoretical and Computational Modeling Research Group and School of Pharmacy, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Tanatchaporn Sangfai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Lin Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
28
|
Pan Y, Tikekar RV, Wang MS, Avena-Bustillos RJ, Nitin N. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Fotticchia I, Fotticchia T, Mattia CA, Netti PA, Vecchione R, Giancola C. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14427-14433. [PMID: 25396753 DOI: 10.1021/la503558w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.
Collapse
Affiliation(s)
- Iolanda Fotticchia
- Dipartimento di Farmacia, Università di Napoli Federico II , via Domenico Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
30
|
In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum. Colloids Surf B Biointerfaces 2014; 122:653-661. [DOI: 10.1016/j.colsurfb.2014.07.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022]
|
31
|
Combrinck J, Otto A, du Plessis J. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid. AAPS PharmSciTech 2014; 15:588-600. [PMID: 24550100 DOI: 10.1208/s12249-014-0081-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/07/2014] [Indexed: 11/30/2022] Open
Abstract
Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.
Collapse
|
32
|
Sadeghpour A, Pirolt F, Iglesias GR, Glatter O. Lipid transfer between submicrometer sized Pickering ISAsome emulsions and the influence of added hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2639-2647. [PMID: 24559265 DOI: 10.1021/la404583y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transfer of lipids between droplets in Pickering emulsions has been studied by time-resolved small-angle X-ray scattering (SAXS). The special features of self-assembled liquid-crystalline phases have been applied to examine the kinetics of internal phase reorganization imposed by lipid release and uptake by the droplets. The findings reveal faster transfer kinetics in Pickering emulsions than in emulsions stabilized with Pluronic F127. It is shown that the transfer kinetics can be accelerated by adding free surfactant to the dispersions and that this acceleration becomes more dominant when micelles are formed. The effect of immobilization of the droplets has been studied by incorporating them into the appropriate hydrogel network. The droplets are arrested, and the transfer slows down significantly at high enough concentrations of the hydrogel where nonergodic systems are obtained.
Collapse
Affiliation(s)
- Amin Sadeghpour
- Department of Chemistry, Karl-Franzens-University Graz , Heinrichstraße 28, 8010 Graz, Austria
| | | | | | | |
Collapse
|
33
|
Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.054] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Parthasarathy S, Siah Ying T, Manickam S. Generation and Optimization of Palm Oil-Based Oil-in-Water (O/W) Submicron-Emulsions and Encapsulation of Curcumin Using a Liquid Whistle Hydrodynamic Cavitation Reactor (LWHCR). Ind Eng Chem Res 2013. [DOI: 10.1021/ie4008858] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shridharan Parthasarathy
- Manufacturing and Industrial
Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia campus, 43500 Semenyih,
Selangor, Malaysia
| | - Tang Siah Ying
- Department of Chemical
Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang,
Setapak, 53300 Kuala Lumpur, Malaysia
| | - Sivakumar Manickam
- Manufacturing and Industrial
Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia campus, 43500 Semenyih,
Selangor, Malaysia
| |
Collapse
|
35
|
Tamilvanan S, Baskar R. Effect of non-phospholipid-based cationic and phospholipid-based anionic nanosized emulsions on skin retention and anti-inflammatory activity of celecoxib. Pharm Dev Technol 2013; 18:761-71. [PMID: 23668371 DOI: 10.3109/10837450.2011.586038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Celecoxib (CXB, 0.2 g)-loaded anionic and cationic nanosized emulsions were prepared by a well-established combined emulsification method. OBJECTIVES To investigate the effect of non-phospholipid-based cationic and phospholipid-based anionic emulsions on skin retention and anti-inflammatory activity of CXB. METHODS Using Keshary-Chien diffusion cells with cellulose acetate membrane or excised rat skin, in vitro release and skin retention of CXB from solution and emulsions were studied. The anti-inflammatory activity was evaluated by the carrageenan-induced hind paw edema method in Wistar rats. RESULTS The amount of drug released through artificial membrane has decreased from 122.00 ± 0.70 μg/cm(2) for the CXB solution to 55.80 ± 0.70 μg/cm(2) for anionic emulsion, and then further decreased to 24.79 ± 0.90 μg/cm(2) for cationic emulsion. The JSS value obtained with solution, anionic, and cationic emulsions were 6825.79 ± 920.86, 2513.15 ± 382.71, and 1925.67 ± 147.42, respectively. Cationic emulsion showed a significantly higher level (P ≤ 0.05) of drug accumulation in full-thickness rat skin than anionic emulsion, and a substantially lesser percentage inhibition of edema values compared with both solution and anionic emulsion. DISCUSSION AND CONCLUSION Sustained drug release together with increased skin accumulation and simultaneously decreased skin permeation as observed with cationic emulsion should substantiate its suitability as a topical delivery vehicle for CXB.
Collapse
Affiliation(s)
- S Tamilvanan
- International Medical University SDN BHD, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
36
|
Scalia S, Franceschinis E, Bertelli D, Iannuccelli V. Comparative Evaluation of the Effect of Permeation Enhancers, Lipid Nanoparticles and Colloidal Silica on in vivo Human Skin Penetration of Quercetin. Skin Pharmacol Physiol 2013. [DOI: 10.1159/000345210] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Jaganathan H, Godin B. Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev 2012; 64:1800-19. [PMID: 22634160 PMCID: PMC3465530 DOI: 10.1016/j.addr.2012.05.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 01/05/2023]
Abstract
Silicon is one of the most abundant chemical elements found on the Earth. Due to its unique chemical and physical properties, silicon based materials and their oxides (e.g. silica) have been used in several industries such as building and construction, electronics, food industry, consumer products and biomedical engineering/medicine. This review summarizes studies on effects of silicon and silica nano- and micro-particles on cells and organs following four main exposure routes, namely, intravenous, pulmonary, dermal and oral. Further, possible genotoxic effects of silica based nanoparticles are discussed. The review concludes with an outlook on improving and standardizing biocompatibility assessment for nano- and micro-particles.
Collapse
Affiliation(s)
- Hamsa Jaganathan
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX
| | - Biana Godin
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX
| |
Collapse
|
38
|
Cho HK, Cho JH, Choi SW, Cheong IW. Topical delivery of retinol emulsions co-stabilised by PEO-PCL-PEO triblock copolymers: effect of PCL block length. J Microencapsul 2012; 29:739-46. [PMID: 22583129 DOI: 10.3109/02652048.2012.686528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article describes enhanced skin permeation and UV/thermal stability of retinol emulsions by the co-stabilisation of Tween20 and biodegradable poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers having different lengths of hydrophobic PCL block. A triblock copolymer with a longer PCL block has a lower hydrophile-lipophile balance (HLB) value. Commercial Retinol 50C® (BASF Co., Ludwigshafen, Germany) was used as the source of retinol. Ultrasonication of the Retinol 50C® emulsion with the triblock copolymers led to an increase in retinol solubilisation and a decrease in average particle size of the resulting retinol emulsion. These characteristics improved skin permeation of retinol through the stratum corneum of artificial skin and subsequent proliferation of viable epidermis cell. Employment of the triblock copolymer with a longer PCL block increased both UV and thermal stabilization of the retinol. These results suggest that HLB and PCL block length are important factors to enhance the topical delivery of retinol into the skin.
Collapse
Affiliation(s)
- Heui Kyoung Cho
- Department of Applied Chemistry, Kyungpook National University, Buk-gu, Daegu, South Korea
| | | | | | | |
Collapse
|
39
|
Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 2012; 161:735-45. [PMID: 22617521 DOI: 10.1016/j.jconrel.2012.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/24/2012] [Accepted: 05/05/2012] [Indexed: 01/19/2023]
Abstract
The objective of the present study was to investigate the effect of polyarginine chain length on topical delivery of surface modified NLCs. Design of experiments (DOE) was used to optimize number of arginines required to deliver active drug into deeper skin layers. The NLCs were prepared by hot-melt technique and the surface of NLCs was modified with six-histidine tagged cell penetrating peptides (CPPs) or YKA. In vivo confocal microscopy and Raman confocal spectroscopy studies were performed using fluorescent dye encapsulated NLCs and NLC-CPPs. Spantide II (SP) and ketoprofen (KP) were used as model drugs for combined delivery. In vitro skin permeation and drug release studies were performed using Franz diffusion cells. Inflammatory response corresponding to higher skin permeation was investigated in allergic contact dermatitis (ACD) mouse model. NLCs had a particle size of 140±20nm with higher encapsulation efficiencies. The negative charge of NLC was reduced from -17.54 to -8.47 mV after surface modification with CPPs. In vivo confocal microscopy and Raman confocal spectroscopy studies suggested that a peptide containing 11 arginines (R11) had significant permeation enhancing ability than other polyarginines and TAT peptides. The amount of SP and KP retained in dermis after topical application of NLC-R11 was significantly higher than solution and NLC after 24 h of skin permeation. SP was not found in receiver compartment. However, KP was found in receiver compartment and the amount of KP present in receiver compartment was increased approximately 7.9 and 2.6 times compared to the control solution and NLCs, respectively. In an ACD mouse model, SP+KP-NLC-R11 showed significant reduction (p<0.05) in ear thickness compared to SP+KP solution and SP+KP-NLC. Our results strongly suggest that the surface modification of NLC with R11 improved transport of SP and KP across the deeper skin layers and thus results in reduction of inflammation associated with ACD.
Collapse
Affiliation(s)
- Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | |
Collapse
|
40
|
Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm 2012; 428:1-7. [DOI: 10.1016/j.ijpharm.2012.01.031] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
|
41
|
Shunmugaperumal T, Ramamurthy S. RETRACTED: Assessment of antibiofilm activity of magnesium fluoride nanoparticles-stabilized oil-in-water nanosized emulsion. Drug Dev Ind Pharm 2012. [DOI: 10.3109/03639045.2012.665459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Simovic S, Barnes TJ, Tan A, Prestidge CA. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids. NANOSCALE 2012; 4:1220-1230. [PMID: 22159191 DOI: 10.1039/c1nr11273b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.
Collapse
Affiliation(s)
- Spomenka Simovic
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
43
|
Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012; 43:85-103. [DOI: 10.1016/j.micron.2011.07.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 12/12/2022]
|
44
|
Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2011; 33:1607-17. [PMID: 22118820 DOI: 10.1016/j.biomaterials.2011.11.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/03/2011] [Indexed: 01/21/2023]
Abstract
The aim of this study was to develop an effective drug delivery system for the simultaneous topical delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP). To achieve this primary goal, we have developed a skin permeating nanogel system (SPN) containing surface modified polymeric bilayered nanoparticles along with a gelling agent. Poly-(lactide-co-glycolic acid) and chitosan were used to prepare bilayered nanoparticles (NPS) and the surface was modified with oleic acid (NPSO). Hydroxypropyl methyl cellulose (HPMC) and Carbopol with the desired viscosity were utilized to prepare the nanogels. The nanogel system was further investigated for in vitro skin permeation, drug release and stability studies. Allergic contact dermatitis (ACD) and psoriatic plaque like model were used to assess the effectiveness of SPN. Dispersion of NPSO in HPMC (SPN) produced a stable and uniform dispersion. In vitro permeation studies revealed increase in deposition of SP for the SP-SPN or SP+KP-SPN in the epidermis and dermis by 8.5 and 9.5 folds, respectively than SP-gel. Further, the deposition of KP for KP-SPN or SP+KP-SPN in epidermis and dermis was 9.75 and 11.55 folds higher, respectively than KP-gel. Similarly the amount of KP permeated for KP-SPN or SP+KP-SPN was increased by 9.92 folds than KP-gel. The ear thickness in ACD model and the expression of IL-17 and IL-23; PASI score and TEWL values in psoriatic plaque like model were significantly less (p < 0.001) for SPN compared to control gel. Our results suggest that SP+KP-SPN have significant potential for the percutaneous delivery of SP and KP to the deeper skin layers for treatment of various skin inflammatory disorders.
Collapse
Affiliation(s)
- Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | |
Collapse
|
45
|
Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 2011; 158:336-45. [PMID: 22134117 DOI: 10.1016/j.jconrel.2011.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
The objective of the present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) ('Nanoease' technology) using an established procedure in the laboratory (KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA). Fluorescent dyes (DiO and DID) containing surface modified (DiO-NPS-OA and DID-NPS-OA) and unmodified NPS (DiO-NPS and DID-NPS) were visualized in lateral rat skin sections using confocal microscopy and Raman confocal spectroscopy after skin permeation. In vitro skin permeation was performed in dermatomed human skin and HPLC was used to analyze the drug levels in different skin layers. Further, allergic contact dermatitis (ACD) model was used to evaluate the response of KP-NPS, SP-NPS, SP+KP-NPS, KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA treatment in C57BL/6 mice. The fluorescence from OA modified NPS was observed up to a depth of 240μm and was significantly higher as compared to non-modified NPS. The amount of SP and KP retained in skin layers from OA modified NPS increased by several folds compared to unmodified NPS and control solution. In addition, the combination index value calculated from ACD response for solution suggested an additive effect and moderate synergism for NPS-OA. Our results strongly suggest that surface modification of bilayered nanoparticles with oleic acid improved drug delivery to the deeper skin layers.
Collapse
Affiliation(s)
- Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|
46
|
Enhancement of transdermal apomorphine delivery with a diester prodrug strategy. Eur J Pharm Biopharm 2011; 78:422-31. [DOI: 10.1016/j.ejpb.2011.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 01/10/2011] [Accepted: 01/31/2011] [Indexed: 11/20/2022]
|
47
|
Eskandar NG, Simovic S, Prestidge CA. Interactions of hydrophilic silica nanoparticles and classical surfactants at non-polar oil–water interface. J Colloid Interface Sci 2011; 358:217-25. [DOI: 10.1016/j.jcis.2011.02.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/29/2022]
|
48
|
Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63:470-91. [PMID: 21315122 DOI: 10.1016/j.addr.2011.01.012] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Skin is a widely used route of delivery for local and systemic drugs and is potentially a route for their delivery as nanoparticles. The skin provides a natural physical barrier against particle penetration, but there are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the openings of hair follicles. Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in treating local skin and systemic diseases has yet to be realised. Most drug delivery particle technologies are based on lipid carriers, i.e. solid lipid nanoparticles and nanoemulsions of around 300 nm in diameter, which are now considered microparticles. Metal nanoparticles are now recognized for seemingly small drug-like characteristics, i.e. antimicrobial activity and skin cancer prevention. We present our unpublished clinical data on nanoparticle penetration and previously published reports that support the hypothesis that nanoparticles >10nm in diameter are unlikely to penetrate through the stratum corneum into viable human skin but will accumulate in the hair follicle openings, especially after massage. However, significant uptake does occur after damage and in certain diseased skin. Current chemistry limits both atom by atom construction of complex particulates and delineating their molecular interactions within biological systems. In this review we discuss the skin as a nanoparticle barrier, recent work in the field of nanoparticle drug delivery to the skin, and future directions currently being explored.
Collapse
|
49
|
Tan A, Davey AK, Prestidge CA. Silica-Lipid Hybrid (SLH) Versus Non-lipid Formulations for Optimising the Dose-Dependent Oral Absorption of Celecoxib. Pharm Res 2011; 28:2273-87. [DOI: 10.1007/s11095-011-0458-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
|
50
|
|