1
|
Kathar N, Rajput N, Jadav T, Sengupta P. Potential degradation products of abemaciclib: Identification and structural characterization employing LC-Q/TOF-MS and NMR including mechanistic explanation. J Pharm Biomed Anal 2024; 237:115762. [PMID: 37844364 DOI: 10.1016/j.jpba.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Degradation products are the potential drug impurities that can be generated during transport and storage of pharmaceuticals. Before this study, degradation chemistry and potential degradation products of abemaciclib (ABM) were unknown. Moreover, no stability-indicating analytical method was available that can be used to analyse ABM in presence of its degradation products. In this study, stress testing on ABM was carried out under oxidative, thermal, photolytic (UV & visible), and hydrolytic (acid, alkaline, and neutral) degradation conditions. The study revealed that ABM is susceptible to photolytic, oxidative, and thermal stress leading to the formation of five degradation products (DPs). ABM and its degradation products were chromatographically separated employing a developed RP-HPLC-based stability-indicating analytical method. The method was transferred to an LC-Q-TOF system for further analysis. To elucidate the structure of degradation products, fragmentation pathway of ABM was initially established through high-resolution mass spectrometry (HRMS). Subsequently, mass fragmentation pathways of all the DPs have been established through HRMS and MSn based analysis. The major degradation product was isolated and fully characterized using atmospheric chemical ionization-mass spectrometry and nuclear magnetic resonance techniques. ABM showed extensive degradation under oxidative and photolytic systems. Therefore, special care may be sought during storage and transport of ABM or its formulations to avoid photolytic and oxidative stress exposure to the drug. Lastly, in silico toxicity of the characterized degradation products was assessed employing ProTox ІІ online web predictor freeware in which some of them were found to have the potential of hepatotoxicity, immunogenicity and mutagenicity.
Collapse
Affiliation(s)
- Nachiket Kathar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
2
|
Liu A, Lin W, Ping S, Guan W, Hu N, Zheng S, Ren Y. Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43984-44002. [PMID: 35122640 DOI: 10.1007/s11356-022-18760-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Antihistamines (ANTs) are medicines to treat allergic diseases. They have been frequently detected in the natural water environment, posing potential threats to the ecological environment and human health. In this study, the degradation of three common antihistamines, loratadine, fexofenadine, and cetirizine, was estimated under different oxidation methods (NaClO, UV, and UV-NaClO). The results showed that UV-NaClO had the highest degree of degradation on the drugs under most conditions: 100% degradation for fexofenadine within 20 s at pH 7 and 10. Under UV irradiation, the degradation efficiencies of the three drugs during 150 s were all above 77% at a pH of 7. The drugs' removal by NaClO was much lower than that of the previous two methods. In addition, this study explored the contribution rates of active oxygen species in the photolysis process. Among them, the contribution of 1O2 to the fexofenadine and cetirizine removal rate reached 70%. Different aqueous matrices (HCO3-, NO3-, and humic acid) had varying degrees of influence on the degradation. Acute toxicity tests and ultraviolet scans of the degradation products showed that the drugs were not completely mineralized, and the toxicities of the intermediates were even higher than those of the parent drugs. There were 9, 8, and 10 chloride oxidation products of loratadine, fexofenadine, and cetirizine, respectively, and 8 photolysis products of cetirizine were identified. For cetirizine, it was found that there were three identical intermediates produced by photodegradation and NaClO oxidation.
Collapse
Affiliation(s)
- Anchen Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Wenqi Guan
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Ningyi Hu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Sichun Zheng
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Salem AE, Mohammed SF, Sadeek SA, Zordok WA, S. El‐Attar M. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of some nanoparticles mixed ligands complexes of cetirizine in presence of 2,2′‐bipyridine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed E. Salem
- Department of Chemistry, The Egyptian mineral resources authority (EMRA) Cairo Egypt
| | - Soha F. Mohammed
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Wael A. Zordok
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Mohamed S. El‐Attar
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
4
|
Chiş V, Vinţeler E. Excitation energies for anionic drugs predicted by PBE0, TPSS and τHCTH density functionals. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
He X, O'Shea KE. Rapid transformation of H 1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by direct peroxymonosulfate (PMS) oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123219. [PMID: 32768849 DOI: 10.1016/j.jhazmat.2020.123219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
With growing interest in advanced oxidation processes (AOPs), the number of research studies on peroxymonosulfate (PMS) mediated pollutant degradation has increased significantly due to its high radical generation potential upon activation. However, rare studies have focused on the non-radical based PMS reactions. In this study, degradation of model H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by unactivated PMS was investigated. Addition of scavengers to the reaction mixture ruled out the involvement of hydroxyl radical (OH), sulfate radical (SO4-), singlet oxygen (1O2) and superoxide anion radical (O2-), indicating direct PMS oxidation as the predominant reaction path. Such a mechanism was further supported by the N-oxide products identified by mass spectrometry and nuclear magnetic resonance (NMR) analyses. Solution pH had a pronounced influence on the degradation kinetics regardless the presence or absence of transition metal Fe(II). The highest species dependent second order rate constants were kHSO5-/DPH0 of 175 ± 15.9 M-1 s-1 and kHSO5-/CET- of 36.6 ± 0.16 M-1 s-1. The addition of 100 μM Fe(II) promoted OH mediated degradation of H1-antihistamines and their N-oxide products. This study demonstrated selective transformation with the potential for extensive degradation employing both the direct and catalytic PMS oxidative processes.
Collapse
Affiliation(s)
- Xuexiang He
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
6
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
7
|
Tiwari SK, Singh DK, Ladumor MK, Chakraborti AK, Singh S. Study of degradation behaviour of montelukast sodium and its marketed formulation in oxidative and accelerated test conditions and prediction of physicochemical and ADMET properties of its degradation products using ADMET Predictor™. J Pharm Biomed Anal 2018; 158:106-118. [DOI: 10.1016/j.jpba.2018.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
|
8
|
Effects of inclusion of cetirizine hydrochloride in β-cyclodextrin. J INCL PHENOM MACRO 2018; 91:149-159. [PMID: 30100814 PMCID: PMC6061035 DOI: 10.1007/s10847-018-0808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 04/27/2018] [Indexed: 10/24/2022]
Abstract
Following the preparation of inclusion complex of cetirizine (CTZ) and β-cyclodextrin (β-CD), the compound was investigated to assess the possibility of modifying the physicochemical properties (solubility, release, stability, permeability) of CTZ after complexation that are vital for subsequent formulation studies involving the said complex. Changes in FT-IR/Raman spectra, DSC thermograms and XRD diffractograms confirmed the formation of a CTZ-β-CD system. Hydrophilic interaction chromatography with a DAD detector was employed to determine alterations of the CTZ concentration during studies following complexation. An analysis of a phase-solubility diagram of cCTZ = fcβ-CD indicated a linear rise in the solubility of CTZ as the concentration of β-CD increased. The inclusion of CTZ in a system with β-CD significantly reduced the instability of CTZ in the presence of oxidizing factors. It was also found that regardless of the pH of the acceptor fluids used in the release studies an increase was observed in the concentration of CTZ in CD system compared to its free form. The ability to permeate artificial biological membranes manifested by CTZ after complexation was enhanced as well. In summary, CD has significant potential to mask the bitter taste of CTZ and to counter the instability induced by oxidizing factors.
Collapse
|
9
|
Lourencao BC, Silva TA, da Silva Santos M, Ferreira AG, Fatibello-Filho O. Sensitive voltammetric determination of hydroxyzine and its main metabolite cetirizine and identification of oxidation products by nuclear magnetic resonance spectroscopy. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Noguchi S, Nishimura T, Mukaida S, Benet LZ, Nakashima E, Tomi M. Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. J Pharm Sci 2017; 106:2895-2898. [PMID: 28385546 DOI: 10.1016/j.xphs.2017.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 01/28/2023]
Abstract
The pharmacokinetics of cetirizine, a nonsedating antihistamine, is profoundly affected by transporter-mediated membrane transport in the kidney. In this study, we aimed to investigate the transport mechanism of levocetirizine, the pharmacologically active enantiomer of cetirizine, via human organic anion transporter 4 (OAT4) expressed in the apical membrane of renal proximal tubules and the basal plasma membrane of placental syncytiotrophoblasts. In cells expressing human OAT4 under the control of tetracycline, levocetirizine uptake was increased by tetracycline treatment. On the other hand, OAT4 expression did not facilitate efflux of preloaded levocetirizine from the cells, either in the presence or absence of extracellular Cl-. The OAT4-mediated levocetirizine uptake was concentration-dependent with a Km of 38 μM. The uptake rate of levocetirizine via OAT4 was approximately twice that of racemic cetirizine, indicating stereoselective uptake of levocetirizine. On the other hand, OAT4-mediated [3H]dehydroepiandrosterone sulfate uptake was inhibited by dextrocetirizine and levocetirizine. Overall, our findings indicate that OAT4 mediates levocetirizine uptake but is unlikely to mediate the efflux.
Collapse
Affiliation(s)
- Saki Noguchi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | | | - Saya Mukaida
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Leslie Z Benet
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan; Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143-0912
| | - Emi Nakashima
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan
| | - Masatoshi Tomi
- Faculty of Pharmacy, Keio University, Minato-ku 105-8512, Tokyo, Japan.
| |
Collapse
|
11
|
Zhou Z. Non-target impurity profiling of marketplace Cetirizine using high-resolution mass spectrometry and multivariate data analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1941-1950. [PMID: 27384394 DOI: 10.1002/rcm.7675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE As always, drug impurity is the first concern of medication safety. The quality of pre- and post-marketed drugs is estimated through systematic analysis of potential hazardous substances by impurity profiling. Impurity profile is the general name of all unwanted materials which may affect the purity of an active pharmaceutical ingredient (API). The safety of original drugs is guaranteed by an enormous amount of animal experiments and clinical research while the safety of generic drugs should also be ensured by comparative analysis for consistency evaluation. The significantly differential impurities between them should be focused on and the toxicity should be further estimated if necessary. Herein, we take a marketplace drug named Cetirizine as an example to investigate if there was a method which could effectively discover the potential markers among Cetirizine tablets with different brands and describe specific impurity profiling which makes the unknown brand of Cetirizine tablets predictable. METHODS Liquid chromatography coupled with high-resolution mass spectrometry (LC/HRMS) was applied to capture the characteristic features of the impurity profile for three brands of marketplace Cetirizine tablets using full scan data-dependent MS/MS scan mode (FS-ddMS(2) ). RESULTS Unsupervised learning: principal component analysis (PCA) and supervised learning: consensus orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to reveal the essential character of Cetirizine impurity profile; 16 differential impurities were finally found, their structures were speculated by HRMS(2) data. CONCLUSIONS The cause of formation was further elucidated which gave a suggestion for production process optimization. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhe Zhou
- Thermo Fisher Scientific (China) Co., Ltd, No 6 Building, 27 Xinjinqiao Road, Shanghai, 201206, China
| |
Collapse
|
12
|
Bibi S, Zhang J. Theoretical studies to investigate the effect of different cores and two different topologies on the optical and charge transfer properties of donor materials for organic solar cells. NEW J CHEM 2016. [DOI: 10.1039/c5nj02412a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three dimensional conjugated three- and four-armed molecules with core-D–π–A and core-A–π–D topologies were designed and studied by DFT, revealing that molecules with the core-A–π–D topology and N or C cores would result low reorganization energies and broad absorption bands for organic solar cells.
Collapse
Affiliation(s)
- Shamsa Bibi
- School of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- Faculty of Chemistry
| | - Jingping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
13
|
Gullapalli RP, Mazzitelli CL. Polyethylene glycols in oral and parenteral formulations—A critical review. Int J Pharm 2015; 496:219-39. [DOI: 10.1016/j.ijpharm.2015.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
14
|
Mead RN, Barefoot S, Helms JR, Morgan JB, Kieber RJ. Photodegradation of the antihistamine cetirizine in natural waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2240-2245. [PMID: 25044350 DOI: 10.1002/etc.2691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
The photodegradation rate of the anti-histamine cetirizine (Zyrtec®) was investigated in various water matrices. The average observed first-order photodegradation rate coefficient (kobs ), obtained by linear regression of the logarithmic-transformed cetirizine concentrations versus irradiation time in simulated sunlight, was 0.024 h(-1) (n = 6; standard deviation ± 0.004) in deionized water corresponding to a half-life of approximately 30 h. There was no statistical difference in the kobs of cetirizine photodegradation in coastal seawater compared with deionized water or deionized water amended with dissolved chromophoric organic matter. The quantum yield of cetirizine photodegradation decreased dramatically with increasing wavelength and decreasing energy of incoming radiation, with the average value ranging from 5.28 × 10(-4) to 6.40 × 10(-3) in the ultraviolet wavelength range (280-366 nm). The activation energy of cetirizine photodegradation was 10.3 kJ mol(-1) with an observed increase in cetirizine photodegradation as temperature increased. This is a significant environmental factor influencing half-life and an important consideration, given that cetirizine has been detected in wastewater and receiving waters from different locations globally.
Collapse
Affiliation(s)
- Ralph N Mead
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | | | | | | | | |
Collapse
|
15
|
Experimental Design Approach for Selective Separation of Vilazodone HCl and Its Degradants by LC-PDA and Characterization of Major Degradants by LC/QTOF–MS/MS. Chromatographia 2014. [DOI: 10.1007/s10337-014-2739-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Maggio RM, Calvo NL, Vignaduzzo SE, Kaufman TS. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J Pharm Biomed Anal 2014; 101:102-22. [PMID: 24853620 DOI: 10.1016/j.jpba.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/29/2022]
Abstract
Current standards and regulations demand the pharmaceutical industry not only to produce highly pure drug substances, but to achieve a thorough understanding of the impurities accompanying their manufactured drug substances and products. These challenges have become important goals of process chemistry and have steadily stimulated the search of impurities after accelerated or forced degradation procedures. As a result, impurity profiling is one of the most attractive, active and relevant fields of modern pharmaceutical analysis. This activity includes the identification, structural elucidation and quantitative determination of impurities and degradation products in bulk drugs and their pharmaceutical formulations. Nuclear magnetic resonance (NMR) spectroscopy has evolved into an irreplaceable approach for pharmaceutical quality assessment, currently playing a critical role in unequivocal structure identification as well as structural confirmation (qualitative detection), enabling the understanding of the underlying mechanisms of the formation of process and/or degradation impurities. NMR is able to provide qualitative information without the need of standards of the unknown compounds and multiple components can be quantified in a complex sample without previous separation. When coupled to separative techniques, the resulting hyphenated methodologies enhance the analytical power of this spectroscopy to previously unknown levels. As a result, and by enabling the implementation of rational decisions regarding the identity and level of impurities, NMR contributes to the goal of making better and safer medicines. Herein are discussed the applications of NMR spectroscopy and its hyphenated derivate techniques to the study of a wide range pharmaceutical impurities. Details on the advantages and disadvantages of the methodology and well as specific challenges with regards to the different analytical problems are also presented.
Collapse
Affiliation(s)
- Rubén M Maggio
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Natalia L Calvo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Silvana E Vignaduzzo
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|
17
|
Ueyama E, Tamura K, Mizukawa K, Kano K. Realistic prediction of solid pharmaceutical oxidation products by using a novel forced oxidation system. J Pharm Sci 2014; 103:1184-93. [PMID: 24497072 DOI: 10.1002/jps.23889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/10/2014] [Accepted: 01/16/2014] [Indexed: 11/11/2022]
Abstract
This study investigated a novel solid-state-based forced oxidation system to enable a realistic prediction of pharmaceutical product oxidation, a key consideration in drug development and manufacture. Polysorbate 80 and ferric(III) acetylacetonate were used as an organic hydroperoxide source and a transition metal catalyst, respectively. Homogeneous solutions of target compounds and these reagents were prepared in a mixed organic solvent. The organic solvent was removed rapidly under reduced pressure, and the oxidation of the resulting dried solid was investigated. Analysis of the oxidation products generated in test compounds by this proposed forced oxidation system using HPLC showed a high similarity with those generated during more prolonged naturalistic drug oxidation. The proposed system provided a better predictive performance in prediction of realistic oxidative degradants of the drugs tested than did other established methods. Another advantage of this system was that the generation of undesired products of hydrolysis, solvolysis, and thermolysis was prevented because efficient oxidation was achieved under mild conditions. The results of this study suggest that this system is suitable for a realistic prediction of oxidative degradation of solid pharmaceuticals.
Collapse
Affiliation(s)
- Eiji Ueyama
- Analytical and Quality Evaluation Research Laboratories, Pharmaceutical Technology Division, Daiichi Sankyo, Hiratsuka, Kanagawa, 254-0014, Japan
| | | | | | | |
Collapse
|
18
|
Ueyama E, Suzuki N, Kano K. Mechanistic Study of the Oxidative Degradation of the Triazole Antifungal Agent CS-758 in an Amorphous Form. J Pharm Sci 2013; 102:104-13. [DOI: 10.1002/jps.23339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/13/2012] [Indexed: 11/08/2022]
|
19
|
Reiter J, Trinka P, Bartha FL, Pongó L, Volk B, Simig G. New Manufacturing Procedure of Cetirizine. Org Process Res Dev 2012. [DOI: 10.1021/op300009y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- József Reiter
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| | - Péter Trinka
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| | - Ferenc L. Bartha
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| | - László Pongó
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| | - Balázs Volk
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| | - Gyula Simig
- EGIS Pharmaceuticals Plc., †Chemical Research
Division, and ‡Small Scale API Production Plant, P.O. Box 100, H-1475
Budapest, Hungary
| |
Collapse
|
20
|
Mhaske RA, Sahasrabudhe S. Identification of major degradation products of ketoconazole. Sci Pharm 2011; 79:817-36. [PMID: 22145107 PMCID: PMC3221500 DOI: 10.3797/scipharm.1107-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022] Open
Abstract
Analytical methods were developed for the identification of major degradation products of Ketoconazole, an antifungal agent. The stressed degradation of Ketoconazole drug substance was performed under acid, base, thermal, photo and oxidative stress conditions. The major degradation was observed under acid, base and oxidative stress conditions. The degradation study was performed on Inertsil ODS-3V, length 100 X diameter 4.6 mm, particle size 3 μm column using gradient method. These degradants were identified by LC-MS technique.
Collapse
Affiliation(s)
- Rajendra A Mhaske
- Sharon Bio Medicine, 312, C-Wing, BSEL Tech Park, Opp. Vashi Railway Station, Sector 30 (A), Vashi, Navi-Mumbai-400703, India
| | | |
Collapse
|