1
|
Boddu SHS, Bhagav P, Karla PK, Jacob S, Adatiya MD, Dhameliya TM, Ranch KM, Tiwari AK. Polyamide/Poly(Amino Acid) Polymers for Drug Delivery. J Funct Biomater 2021; 12:58. [PMID: 34698184 PMCID: PMC8544418 DOI: 10.3390/jfb12040058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
Polymers have always played a critical role in the development of novel drug delivery systems by providing the sustained, controlled and targeted release of both hydrophobic and hydrophilic drugs. Among the different polymers, polyamides or poly(amino acid)s exhibit distinct features such as good biocompatibility, slow degradability and flexible physicochemical modification. The degradation rates of poly(amino acid)s are influenced by the hydrophilicity of the amino acids that make up the polymer. Poly(amino acid)s are extensively used in the formulation of chemotherapeutics to achieve selective delivery for an appropriate duration of time in order to lessen the drug-related side effects and increase the anti-tumor efficacy. This review highlights various poly(amino acid) polymers used in drug delivery along with new developments in their utility. A thorough discussion on anticancer agents incorporated into poly(amino acid) micellar systems that are under clinical evaluation is included.
Collapse
Affiliation(s)
- Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Prakash Bhagav
- Advanced Drug Delivery Research and Development, Sampann Research and Development, Panacea Biotec Ltd., Ambala, Chandigarh Highway, Lalru 140501, India;
| | - Pradeep K. Karla
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th St. N.W., Washington, DC 20059, USA
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mansi D. Adatiya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Tejas M. Dhameliya
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Ketan M. Ranch
- Lallubhai Motilal College of Pharmacy, Navrangpura, Ahmedabad 380009, India; (M.D.A.); (T.M.D.); (K.M.R.)
| | - Amit K. Tiwari
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Pharmacology & Experimental Therapeutics, Health Science Campus, The University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
2
|
Al-Amili M, Jin Z, Wang Z, Guo S. Self-Assembled Micelles of Amphiphilic PEGylated Drugs for Cancer Treatment. Curr Drug Targets 2021; 22:870-881. [PMID: 33390113 DOI: 10.2174/1389450122666201231130702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Generally, poor solubility and imprecise delivery of chemotherapeutic drugs can compromise their efficacies for clinical cancer treatment. In order to address such concerns, poor water-soluble drugs are conjugated with poly(ethylene glycol) (PEG) to obtain PEGylated drugs, which have improved water solubility and can also self-assemble in an aqueous solution to form micelles (PEGylated drug micelles). The surface PEG layer enhances the micelles' colloidal stability and reduces the interaction with physiological surroundings. Meanwhile, PEGylated drug micelles are tumor- targeting via the enhanced permeation and retention (EPR) effect to improve antitumor efficacy in comparison with free drugs. PEGylated drug micelles employ drugs as parts of the carrier medium, which increases the micelles' drug loading capacity relatively. The development of stimuli- responsive PEGylated drug micelles facilitates the drug release to be smart and controllable. Moreover, the PEGylated drug micelles show great potentials in overcoming the challenges of cancer therapy, such as multidrug resistance (MDR), angiogenesis, immunosuppression, and so on. In this review, we highlight the research progresses of PEGylated drug micelles, including the structures and properties, smart stimuli-responsive PEGylated drug micelles, and the challenges that have been overcome by PEGylated drug micelles.
Collapse
Affiliation(s)
- Majdi Al-Amili
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Brunato S, Mastrotto F, Bellato F, Bastiancich C, Travanut A, Garofalo M, Mantovani G, Alexander C, Preat V, Salmaso S, Caliceti P. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study. J Control Release 2021; 335:21-37. [PMID: 33989691 DOI: 10.1016/j.jconrel.2021.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
A library of amphiphilic monomethoxypolyethylene glycol (mPEG) terminating polyaminoacid co-polymers able to self-assemble into colloidal systems was screened for the delivery and controlled release of doxorubicin (Doxo). mPEG-Glu/Leu random co-polymers were generated by Ring Opening Polymerization from 5 kDa mPEG-NH2 macroinitiator using 16:0:1, 8:8:1, 6:10:1, 4:12:1 γ-benzyl glutamic acid carboxy anhydride monomer/leucine N-carboxy anhydride monomer/PEG molar ratios. Glutamic acid was selected for chemical conjugation of Doxo, while leucine units were introduced in the composition of the polyaminoacid block as spacer between adjacent glutamic repeating units to minimize the steric hindrance that could impede the Doxo conjugation and to promote the polymer self-assembly by virtue of the aminoacid hydrophobicity. The benzyl ester protecting the γ-carboxyl group of glutamic acid was quantitatively displaced with hydrazine to yield mPEG5kDa-b-(hydGlum-r-Leun). Doxo was conjugated to the diblock co-polymers through pH-sensitive hydrazone bond. The Doxo derivatized co-polymers obtained with a 16:0:1, 8:8:1, 6:10:1 Glu/Leu/PEG ratios self-assembled into 30-40 nm spherical nanoparticles with neutral zeta-potential and CMC in the range of 4-7 μM. At pH 5.5, mimicking endosome environment, the carriers containing leucine showed a faster Doxo release than at pH 7.4, mimicking the blood conditions. Doxo-loaded colloidal formulations showed a dose dependent cytotoxicity on two cancer cell lines, CT26 murine colorectal carcinoma and 4T1 murine mammary carcinoma with IC50 slightly higher than those of free Doxo. The carrier assembled with the polymer containing 6:10:1 hydGlu/Leu/PEG molar ratio {mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10]} was selected for subsequent in vitro and in vivo investigations. Confocal imaging on CT26 cell line showed that intracellular fate of the carrier involves a lysosomal trafficking pathway. The intratumor or intravenous injection to CT26 and 4T1 subcutaneous tumor bearing mice yielded higher antitumor activity compared to free Doxo. Furthermore, mPEG5kDa-b-[(Doxo-hydGlu)6-r-Leu10] displayed a better safety profile when compared to commercially available Caelyx®.
Collapse
Affiliation(s)
- Silvia Brunato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Chiara Bastiancich
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Alessandra Travanut
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Mantovani
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Cameron Alexander
- Molecular Therapeutics and Formulations Division, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Veronique Preat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy.
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
4
|
Rauf A, Ishtiaq M, Siddiqui MK, Andleeb R. Topological Properties of Doxorubicin Conjugated PEG-PAsp Copolymer Molecular Structure Used in Cancer Treatment. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1791918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abdul Rauf
- Department of Computer Science and Engineering, Air University Multan Campus, Multan, Pakistan
| | - Muhammad Ishtiaq
- Department of Computer Science and Engineering, Air University Multan Campus, Multan, Pakistan
| | | | - Rimsha Andleeb
- Department of Computer Science and Engineering, Air University Multan Campus, Multan, Pakistan
| |
Collapse
|
5
|
Ozturk N, Kara A, Gulyuz S, Ozkose UU, Tasdelen MA, Bozkir A, Yilmaz O, Vural I. Exploiting ionisable nature of PEtOx- co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul 2020; 37:467-480. [PMID: 32627670 DOI: 10.1080/02652048.2020.1792566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS This study was conducted to evaluate block copolymers containing two different poly(ethyleneimine) (PEI) amounts, as new pH-sensitive micellar delivery systems for doxorubicin. METHODS Micelles were prepared with block copolymers consisting of poly(2-ethyl-2-oxazoline)-co-poly(ethyleneimine) (PEtOx-co-PEI) and poly(ε-caprolactone) (PCL) as hydrophilic and hydrophobic blocks, respectively. Doxorubicin loading, micelle size, pH-dependent drug release, and in vitro cytotoxicity on MCF-7 cells were investigated. RESULTS The average size of drug-loaded micelles was under 100 nm and drug loading was between 10.7% and 48.3% (w/w). pH-sensitive drug release was more pronounced (84.7% and 68.9% (w/w) of drug was released at pH 5.0 and pH 7.4, respectively) for the micelles of the copolymer with the lowest PEI amount. The cell viability of doxorubicin-loaded micelles which were prepared by the copolymer with the lowest PEI amount was 28-33% at 72 h. CONCLUSIONS PEtOx-co-PEI-b-PCL micelles of this copolymer were found to be stable and effective pH-sensitive nano-sized carriers for doxorubicin delivery.
Collapse
Affiliation(s)
- Naile Ozturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Asli Kara
- Department of Medical Services and Techniques, Sungurlu Vocational High School, Hitit University, Corum, Turkey.,Department of Nanotechnology and Nanomedicine, Hacettepe University Institute of Science, Ankara, Turkey
| | - Sevgi Gulyuz
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Umut Ugur Ozkose
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey.,Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Istanbul, Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey
| | - Asuman Bozkir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ozgur Yilmaz
- Materials Institute, Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
7
|
Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Peng
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Jitender Bariwal
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Virender Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug DeliveryUniversity of Mississippi University MS 38677 USA
| | - Ram I. Mahato
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
8
|
Zhang W, Huang Z, Pu X, Chen X, Yin G, Wang L, Zhang F, Gao F. Fabrication of doxorubicin and chlorotoxin-linked Eu-Gd2O3 nanorods with dual-model imaging and targeted therapy of brain tumor. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Metcalf CA, Svenson S, Hwang J, Tripathi S, Gangal G, Kabir S, Lazarus D, Cole R, Sweryda-Krawiec B, Shum P, Brown D, Case RI, van der Poll D, Rohde E, Harlfinger S, Teng CH, Eliasof S. Discovery of a Novel Cabazitaxel Nanoparticle–Drug Conjugate (CRLX522) with Improved Pharmacokinetic Properties and Anticancer Effects Using a β-Cyclodextrin–PEG Copolymer Based Delivery Platform. J Med Chem 2019; 62:9541-9559. [DOI: 10.1021/acs.jmedchem.9b00892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chester A. Metcalf
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sonke Svenson
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jungyeon Hwang
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Snehlata Tripathi
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Geeti Gangal
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sujan Kabir
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Douglas Lazarus
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Roderic Cole
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Beata Sweryda-Krawiec
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Pochi Shum
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donna Brown
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Roy I. Case
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Derek van der Poll
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ellen Rohde
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Stephanie Harlfinger
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chi-Hse Teng
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Scott Eliasof
- Cerulean Pharma Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
10
|
El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, Nottelet B. Double-Hydrophilic Block Copolymers Based on Functional Poly(ε-caprolactone)s for pH-Dependent Controlled Drug Delivery. Biomacromolecules 2019; 21:397-407. [DOI: 10.1021/acs.biomac.9b01006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ayman El Jundi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Sytze Buwalda
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Sylvie Hunger
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Jean Coudane
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| | - Youssef Bakkour
- Laboratory of Applied Chemistry (LAC), Faculty of Science III, Lebanese University, P.O. Box 826, Tripoli, Lebanon
| | - Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34093 CEDEX 5, France
| |
Collapse
|
11
|
Zheng Y, Shi S, Liu Y, Zhao Y, Sun Y. Targeted pharmacokinetics of polymeric micelles modified with glycyrrhetinic acid and hydrazone bond in H22 tumor-bearing mice. J Biomater Appl 2019; 34:141-151. [DOI: 10.1177/0885328219841487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yan Zheng
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Shudan Shi
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yaru Liu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yandan Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yuqi Sun
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
12
|
Sill KN, Sullivan B, Carie A, Semple JE. Synthesis and Characterization of Micelle-Forming PEG-Poly(Amino Acid) Copolymers with Iron-Hydroxamate Cross-Linkable Blocks for Encapsulation and Release of Hydrophobic Drugs. Biomacromolecules 2017; 18:1874-1884. [DOI: 10.1021/acs.biomac.7b00317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kevin N. Sill
- Intezyne Technologies, 3720 Spectrum Boulevard, Suite 104, Tampa, Florida 33612, United States
| | - Bradford Sullivan
- Intezyne Technologies, 3720 Spectrum Boulevard, Suite 104, Tampa, Florida 33612, United States
| | - Adam Carie
- Intezyne Technologies, 3720 Spectrum Boulevard, Suite 104, Tampa, Florida 33612, United States
| | - J. Edward Semple
- Intezyne Technologies, 3720 Spectrum Boulevard, Suite 104, Tampa, Florida 33612, United States
| |
Collapse
|
13
|
Du X, Sun Y, Zhang M, He J, Ni P. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13939-13949. [PMID: 28378998 DOI: 10.1021/acsami.7b02281] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.
Collapse
Affiliation(s)
- Xueqiong Du
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
14
|
Ng KE, Amin MCIM, Katas H, Amjad MW, Butt AM, Kesharwani P, Iyer AK. pH-Responsive Triblock Copolymeric Micelles Decorated with a Cell-Penetrating Peptide Provide Efficient Doxorubicin Delivery. NANOSCALE RESEARCH LETTERS 2016; 11:539. [PMID: 27921280 PMCID: PMC5138181 DOI: 10.1186/s11671-016-1755-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/25/2016] [Indexed: 05/10/2023]
Abstract
This study developed novel triblock pH-responsive polymeric micelles (PMs) using cholic acid-polyethyleneimine-poly-L-arginine (CA-PEI-pArg) copolymers. PEI provided pH sensitivity, while the hydrophilic cell-penetrating pArg peptide promoted cellular PM internalization. The copolymers self-assembled into PMs in aqueous solution at above the critical micelle concentration (2.98 × 10-7 M) and encapsulated doxorubicin in the core region, with a 34.2% (w/w) entrapment efficiency. PMs showed pH-dependent swelling, increasing in size by almost sevenfold from pH 7.4 to 5.0. Doxorubicin release was pH-dependent, with about 65% released at pH 5.0, and 32% at pH 7.4. Cellular uptake, assessed by confocal microscopy and flow cytometry, was enhanced by using doxorubicin-loaded CA-PEI-pArg PMs, as compared to free doxorubicin and DOX-loaded CA-PEI PMs. Moreover, 24-h incubation of these PMs with a human breast cancer cell line produced greater cytotoxicity than free doxorubicin. These results indicate that pH-responsive CA-PEI-pArg micelles could provide a versatile delivery system for targeted cancer therapy using hydrophobic drugs. Graphical of CA-PEI-pArg polymeric micelles as a pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Khen Eng Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia.
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Muhammad Wahab Amjad
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Adeel Masood Butt
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| |
Collapse
|
15
|
Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies. Pharm Res 2016; 34:394-407. [DOI: 10.1007/s11095-016-2070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
|
16
|
Curtis LT, Rychahou P, Bae Y, Frieboes HB. A Computational/Experimental Assessment of Antitumor Activity of Polymer Nanoassemblies for pH-Controlled Drug Delivery to Primary and Metastatic Tumors. Pharm Res 2016; 33:2552-64. [PMID: 27356524 DOI: 10.1007/s11095-016-1981-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE Polymer nanoassemblies (PNAs) with drug release fine-tuned to occur in acidic tumor regions (pH < 7) while sparing normal tissues (pH = 7.4) were previously shown to hold promise as nanoparticle drug carriers to effectively suppress tumor growth with reduced systemic toxicity. However, therapeutic benefits of pH-controlled drug delivery remain elusive due to complex interactions between the drug carriers, tumor cells with varying drug sensitivity, and the tumor microenvironment. METHODS We implement a combined computational and experimental approach to evaluate the in vivo antitumor activity of acid-sensitive PNAs controlling drug release in pH 5 ~ 7.4 at different rates [PNA1 (fastest) > PNA2 > PNA3 (slowest)]. RESULTS Computational simulations projecting the transport, drug release, and antitumor activity of PNAs in primary and metastatic tumor models of colorectal cancer correspond well with experimental observations in vivo. The simulations also reveal that all PNAs could reach peak drug concentrations in tumors at 11 h post injection, while PNAs with slower drug release (PNA2 and PNA3) reduced tumor size more effectively than fast drug releasing PNA1 (24.5 and 20.3 vs 7.5%, respectively, as fraction of untreated control). CONCLUSION A combined computational/experimental approach may help to evaluate pH-controlled drug delivery targeting aggressive tumors that have substantial acidity.
Collapse
Affiliation(s)
- Louis T Curtis
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, Kentucky, 40208, USA
| | - Piotr Rychahou
- Markey Cancer Center and Department of Surgery, University of Kentucky, 741 South Limestone,, Lexington, Kentucky, 40506, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone,, Lexington, Kentucky, 40536, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, Kentucky, 40208, USA. .,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
17
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
18
|
Kavanaugh TE, Werfel TA, Cho H, Hasty KA, Duvall CL. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res 2016; 6:132-47. [PMID: 25990835 PMCID: PMC4654703 DOI: 10.1007/s13346-015-0234-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is a disease characterized by degradation of joints with the development of painful osteophytes in the surrounding tissues. Currently, there are a limited number of treatments for this disease, and many of these only provide temporary, palliative relief. In this review, we discuss particle-based drug delivery systems that can provide targeted and sustained delivery of imaging and therapeutic agents to OA-affected sites. We focus on technologies such as polymeric micelles and nano-/microparticles, liposomes, and dendrimers for their potential treatment and/or diagnosis of OA. Several promising studies are highlighted, motivating the continued development of delivery technologies to improve treatments for OA.
Collapse
Affiliation(s)
- Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hongsik Cho
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Karen A Hasty
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Reichel D, Rychahou P, Bae Y. Polymer nanoassemblies with solvato- and halo-fluorochromism for drug release monitoring and metastasis imaging. Ther Deliv 2015; 6:1221-37. [PMID: 26446432 PMCID: PMC4977001 DOI: 10.4155/tde.15.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Theranostics, an emerging technique that combines therapeutic and diagnostic modalities for various diseases, holds promise to detect cancer in early stages, eradicate metastatic tumors and ultimately reduce cancer mortality. METHODS & RESULTS This study reports unique polymer nanoassemblies that increase fluorescence intensity upon addition of hydrophobic drugs and either increase or decrease fluorescence intensity in acidic environments, depending on nanoparticle core environment properties. Extensive spectroscopic analyses were performed to determine optimal excitation and emission wavelengths, which enabled real time measurement of drugs releasing from the nanoassemblies and ex vivo imaging of acidic liver metastatic tumors from mice. CONCLUSION Polymer nanoassemblies with solvato- and halo-fluorochromic properties are promising platforms to develop novel theranostic tools for the detection and treatment of metastatic tumors.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536–0596, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536, USA
- Department of Surgery, College of Medicine, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536–0596, USA
| |
Collapse
|
21
|
Topete A, Barbosa S, Taboada P. Intelligent micellar polymeric nanocarriers for therapeutics and diagnosis. J Appl Polym Sci 2015. [DOI: 10.1002/app.42650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología; Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara; 44340 Guadalajara Jalisco Mexico
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada; Universidad de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada; Universidad de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
22
|
Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Acta Biomater 2015; 16:156-68. [PMID: 25662165 DOI: 10.1016/j.actbio.2015.01.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 11/21/2022]
Abstract
In this study, monomethoxy (polyethylene glycol)-b-P (d,l-lactic-co-glycolic acid)-b-P (l-glutamic acid) (mPEG-PLGA-PGlu) nanoparticles with the ability to rapidly respond to the endolysosomal pH and hydrolase were prepared and the pH-sensitivity was tuned by adjusting the length of the PGlu segment. The mPEG5k-PLGA20k-PGlu (60) nanoparticles were specifically responsive to an endosomal pH of 5.0-6.0 due to the configuration transition of the PGlu segment and rapidly initiated chemical degradation after incubation with proteinase k for 10 min. Doxorubicin hydrochloride (DOX), used as a model drug, was easily encapsulated into nanoparticles and the DOX-loaded nanoparticles (DOX-NPs) exhibited a pH-dependent and enzyme-sensitive release profile in vitro. The dual sensitivity enabled the rapid escape of DOX-loaded nanoparticles from the endolysosomal system to target cellular nuclei, which resulted in increased cell toxicity against MCF/ADR resistant breast cancer cells and a higher cellular uptake than free DOX. In Vivo Imaging studies indicated that the nanoparticles could continuously accumulate in the tumor tissues through EPR effects and Ex vivo Imaging biodistribution studies indicated that DOX-NPs increased drug penetration into tumors compared with normal tissues. The in vivo antitumor activity demonstrated that DOX-loaded NPs had less body loss and a significant regression of tumor growth, indicating the increased anti-tumor efficacy and lower systemic toxicity. Therefore, this dual sensitive nanoparticle system may be a potential nanocarrier to overcome the multidrug resistance exhibited by breast cancer.
Collapse
|
23
|
Cheng W, Kumar JN, Zhang Y, Liu Y. pH- and redox-responsive self-assembly of amphiphilic hyperbranched poly(amido amine)s for controlled doxorubicin delivery. Biomater Sci 2015. [PMID: 26222420 DOI: 10.1039/c4bm00410h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyl-terminated hyperbranched poly(amido amine)s is obtained by Michael addition polymerization of 4-(aminomethyl)piperidine (AMPD) with a double molar N,N-cystaminebis(acrylamide) (BAC). Then an amphiphilic hyperbranched poly(BAC2-AMPD1)-PEG is produced via converting the vinyl groups to amines followed by PEGylation. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and (1)H nuclear magnetic resonance (NMR) results indicate that the micelles can be obtained via self-assembly of hyperbranched poly(BAC2-AMPD1)-PEG. Further an anti-cancer drug, doxorubicin (DOX), can be loaded into the micelles. pH- and redox-response of the micelles of hyperbranched poly(BAC2-AMPD1)-PEG without and with DOX are investigated. The results of confocal microscopy and flow cytometry reflect that FITC tagged or DOX loaded micelles of hyperbranched poly(BAC2-AMPD1)-PEG can enter HepG2 and MCF-7 cells, and DOX can be observed in the nucleus of the cells. The cytotoxicity of the micelles without and with DOX is evaluated in HepG2 and MCF-7 cells, and the efficacy to kill the cancer cells is discussed in comparison with free DOX.
Collapse
Affiliation(s)
- Weiren Cheng
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore.
| | | | | | | |
Collapse
|
24
|
Amphiphilic poly(amino acid) based micelles applied to drug delivery: The in vitro and in vivo challenges and the corresponding potential strategies. J Control Release 2015; 199:84-97. [DOI: 10.1016/j.jconrel.2014.12.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
|
25
|
Kundu P, Maiti S. Cetyl gellan copolymer micelles and hydrogels: In vitro and pharmacodynamic assessment for drug delivery. Int J Biol Macromol 2015; 72:1027-33. [DOI: 10.1016/j.ijbiomac.2014.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/08/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
|
26
|
Cheng W, Gu L, Ren W, Liu Y. Stimuli-responsive polymers for anti-cancer drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:600-8. [DOI: 10.1016/j.msec.2014.05.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022]
|
27
|
Release, partitioning, and conjugation stability of doxorubicin in polymer micelles determined by mechanistic modeling. Pharm Res 2014; 32:1752-63. [PMID: 25407546 DOI: 10.1007/s11095-014-1573-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE To better understand the mechanistic parameters that govern drug release from polymer micelles with acid-labile linkers. METHODS A mathematical model was developed to describe drug release from block copolymer micelles composed of a poly(ethylene glycol) shell and a poly(aspartate) core, modified with drug binding linkers for pH-controlled release [hydrazide (HYD), aminobenzoate-hydrazide (ABZ), or glycine-hydrazide (GLY)]. Doxorubicin (Dox) was conjugated to the block copolymers through acid-labile hydrazone bonds. The polymer drug conjugates were used to prepare three polymer micelles (HYD-M, ABZ-M, and GLY-M). Drug release studies were performed to identify the factors governing pH-sensitive release of Dox. The effect of prolonged storage of copolymer material on release kinetics was also observed. RESULTS Biphasic drug release kinetics were observed for all three micelle formulations. The developed model was able to quantify observed release kinetics upon the inclusion of terms for unconjugated Dox and two populations of conjugated Dox. Micelle/water partitioning of Dox was also incorporated into the model and found significant in all micelles under neutral conditions but reduced under acidic conditions. The drug binding linker played a major role in drug release as the extent of Dox release at specific time intervals was greater at pH 5.0 than at pH 7.4 (HYD-M > ABZ-M > GLY-M). Mathematical modeling was also able to correlate changes in release kinetics with the instability of the hydrazone conjugation of Dox during prolonged storage. CONCLUSION These results illustrate the potential utility of mechanistic modeling to better assess release characteristics intrinsic to a particular drug/nanoparticle system.
Collapse
|
28
|
Pang X, Lu Z, Du H, Yang X, Zhai G. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2014; 123:778-86. [DOI: 10.1016/j.colsurfb.2014.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 01/18/2023]
|
29
|
Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB. Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 2014. [DOI: 10.1039/c4ra06406b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Markovsky E, Baabur-Cohen H, Satchi-Fainaro R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J Control Release 2014; 187:145-57. [DOI: 10.1016/j.jconrel.2014.05.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
|
31
|
Ponta A, Bae Y. Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles. J Drug Target 2014; 22:619-28. [PMID: 24766185 DOI: 10.3109/1061186x.2014.910793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanoparticles are widely used as drug carriers for controlled, tumor-targeted delivery of various anticancer agents that have biopharmaceutical limitations such as water solubility and tissue permeability. Growing evidence suggests that nanoparticles not only reduce toxic side effects of anticancer drugs but also improve the therapeutic efficacy as a function of their drug-release profile. The purpose of this study is to confirm such hypothetical effects of tunable drug release on improving antitumor activity of nanoparticles in vitro and in vivo, using block copolymer micelles as drug carriers. Micelles were prepared from poly(ethylene glycol)-poly(aspartate) block copolymers modified with hydrazide (HYD), aminobenzoate hydrazide (ABZ) and glycine hydrazide (GLY) linkers to achieve a pH-dependent, tunable release of doxorubicin (DOX), a model anticancer drug. Regardless of the drug-release profile, all three micelles showed similar properties in vitro, such as pH-dependent drug release, intracellular drug delivery and cancer cell growth inhibition. However, micelles releasing DOX slowly in vitro showed that the most effective antitumor activity in vivo, compared to the micelles releasing drugs faster. These results demonstrate that tumor-preferential sustained drug release can enhance the antitumor activity of the micelles.
Collapse
Affiliation(s)
- Andrei Ponta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, KY , USA
| | | |
Collapse
|
32
|
Tian R, Chen J, Niu R. The development of low-molecular weight hydrogels for applications in cancer therapy. NANOSCALE 2014; 6:3474-82. [PMID: 24548933 DOI: 10.1039/c3nr05414d] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.
Collapse
Affiliation(s)
- Ran Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China.
| | | | | |
Collapse
|
33
|
Zhai S, Ma Y, Chen Y, Li D, Cao J, Liu Y, Cai M, Xie X, Chen Y, Luo X. Synthesis of an amphiphilic block copolymer containing zwitterionic sulfobetaine as a novel pH-sensitive drug carrier. Polym Chem 2014. [DOI: 10.1039/c3py01325a] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Chen W, Zhang JZ, Hu J, Guo Q, Yang D. Preparation of amphiphilic copolymers for covalent loading of paclitaxel for drug delivery system. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry; University of California; Santa Cruz California 95064
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University; Shanghai 201203 China
| | - Qisang Guo
- Mdical Center for Diagnostics & Treat of Cervical Disease, Obstetrics and Gynecology Hospital, Fudan University; Shanghai 200011 China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
35
|
Koutroumanis KP, Holdich RG, Georgiadou S. Synthesis and micellization of a pH-sensitive diblock copolymer for drug delivery. Int J Pharm 2013; 455:5-13. [DOI: 10.1016/j.ijpharm.2013.06.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
36
|
Aw MS, Kurian M, Losic D. Polymeric micelles for multidrug delivery and combination therapy. Chemistry 2013; 19:12586-601. [PMID: 23943229 DOI: 10.1002/chem.201302097] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of conventional therapy based on a single therapeutic agent is not optimal to treat human diseases. The concept called "combination therapy", based on simultaneous administration of multiple therapeutics is recognized as a more efficient solution. Interestingly, this concept has been in use since ancient times in traditional herbal remedies with drug combinations, despite mechanisms of these therapeutics not fully comprehended by scientists. This idea has been recently re-enacted in modern scenarios with the introduction of polymeric micelles loaded with several drugs as multidrug nanocarriers. This Concept article presents current research and developments on the application of polymeric micelles for multidrug delivery and combination therapy. The principles of micelle formation, their structure, and the developments and concept of multidrug delivery are introduced, followed by discussion on recent advances of multidrug delivery concepts directed towards targeted drug delivery and cancer, gene, and RNA therapies. The advantages of various polymeric micelles designed for different applications, and new developments combined with diagnostics and imaging are elucidated. A compilation work from our group based on multidrug-loaded micelles as carriers in drug-releasing implants for local delivery systems based on titania nanotubes is summarized. Finally, an overview of recent developments and prospective outlook for future trends in this field is given.
Collapse
Affiliation(s)
- Moom Sinn Aw
- School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)
| | | | | |
Collapse
|
37
|
Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 2013; 34:5722-35. [DOI: 10.1016/j.biomaterials.2013.04.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
|
38
|
Lee HJ, Bae Y. Brushed Block Copolymer Micelles with pH-Sensitive Pendant Groups for Controlled Drug Delivery. Pharm Res 2013; 30:2077-86. [DOI: 10.1007/s11095-013-1060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
39
|
Sun Q, Radosz M, Shen Y. Rational Design of Translational Nanocarriers. FUNCTIONAL POLYMERS FOR NANOMEDICINE 2013. [DOI: 10.1039/9781849737388-00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qihang Sun
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY 82071USA
| | - Maciej Radosz
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY 82071USA
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R.
| |
Collapse
|
40
|
Sun Q, Wang J, Radosz M, Shen Y. Polymer-Based Prodrugs for Cancer Chemotherapy. FUNCTIONAL POLYMERS FOR NANOMEDICINE 2013. [DOI: 10.1039/9781849737388-00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qihang Sun
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Jinqiang Wang
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| | - Maciej Radosz
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| |
Collapse
|
41
|
Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun (Camb) 2013; 49:2082-102. [DOI: 10.1039/c2cc36589h] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Cheng K, Sun Z, Zhou Y, Zhong H, Kong X, Xia P, Guo Z, Chen Q. Preparation and biological characterization of hollow magnetic Fe3O4@C nanoparticles as drug carriers with high drug loading capability, pH-control drug release and MRI properties. Biomater Sci 2013; 1:965-974. [DOI: 10.1039/c3bm60087d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release 2012; 164:156-69. [DOI: 10.1016/j.jconrel.2012.05.042] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/21/2023]
|
44
|
Lee HJ, Bae Y. Pharmaceutical Differences Between Block Copolymer Self-Assembled and Cross-Linked Nanoassemblies as Carriers for Tunable Drug Release. Pharm Res 2012; 30:478-88. [DOI: 10.1007/s11095-012-0893-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
|
45
|
Boekhoven J, Koot M, Wezendonk TA, Eelkema R, van Esch JH. A self-assembled delivery platform with post-production tunable release rate. J Am Chem Soc 2012; 134:12908-11. [PMID: 22823592 DOI: 10.1021/ja3051876] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Self-assembly of three molecular components results in a delivery platform, the release rate of which can be tuned after its production. A fluorophore-conjugated gelator can be hydrolyzed by an enzyme, resulting in the release of a fluorescent small molecule. To allow the release to be tunable, the enzyme is entrapped in liposomes and can be liberated by heating the system for a short period. Crucially, the heating time determines the amount of enzyme liberated; with that, the release rate can be tuned by the time of heating.
Collapse
Affiliation(s)
- Job Boekhoven
- Department of Chemical Engineering, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
YU S, WANG Z, WU G, WANG Y, GAO H, MA J. ANTI-TUMOR DRUG DELIVERY OF A pH-SENSITIVE POLY(ASPARTIC ACID)-CONTAINING BLOCK COPOLYMER. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.11222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012; 7:9. [PMID: 22589052 DOI: 10.1007/s13758-011-0009-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/29/2011] [Indexed: 11/27/2022] Open
Abstract
This review focuses on smart nano-materials built of stimuli-responsive (SR) polymers and will discuss their numerous applications in the biomedical field. The authors will first provide an overview of different stimuli and their corresponding, responsive polymers. By introducing myriad functionalities, SR polymers present a wide range of possibilities in the design of stimuli-responsive devices, making use of virtually all types of polymer constructs, from self-assembled structures (micelles, vesicles) to surfaces (polymer brushes, films) as described in the second section of the review. In the last section of this review the authors report on some of the most promising applications of stimuli-responsive polymers in nanomedicine. In particular, we will discuss applications pertaining to diagnosis, where SR polymers are used to construct sensors capable of selective recognition and quantification of analytes and physical variables, as well as imaging devices. We will also highlight some examples of responsive systems used for therapeutic applications, including smart drug delivery systems (micelles, vesicles, dendrimers...) and surfaces for regenerative medicine.
Collapse
Affiliation(s)
- Etienne Cabane
- Chemistry Department, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Drug Release Patterns and Cytotoxicity of PEG-poly(aspartate) Block Copolymer Micelles in Cancer Cells. Pharm Res 2012; 29:1755-67. [DOI: 10.1007/s11095-012-0697-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 01/27/2012] [Indexed: 12/22/2022]
|
49
|
Wang HF, Jia HZ, Cheng SX, Feng J, Zhang XZ, Zhuo RX. PEG-Stabilized Micellar System with Positively Charged Polyester Core for Fast pH-Responsive Drug Release. Pharm Res 2012; 29:1582-94. [DOI: 10.1007/s11095-012-0669-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/03/2012] [Indexed: 11/21/2022]
|
50
|
Scott D, Rohr J, Bae Y. Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity. Int J Nanomedicine 2011; 6:2757-67. [PMID: 22114504 PMCID: PMC3218587 DOI: 10.2147/ijn.s25427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mithramycin (MTM), a natural product of soil bacteria from the Streptomyces genus, displays potent anticancer activity but has been limited clinically by severe side effects and toxicities. Engineering of the MTM biosynthetic pathway has produced the 3-side-chain-modified analogs MTM SK (SK) and MTM SDK (SDK), which have exhibited increased anticancer activity and improved therapeutic index. However, these analogs still suffer from low bioavailability, short plasma retention time, and low tumor accumulation. In an effort to aid with these shortcomings, two nanoparticulate formulations, poly(ethylene glycol)-poly(aspartate hydrazide) self-assembled and cross-linked micelles, were investigated with regard to the ability to load and pH dependently release the drugs. Micelles were successfully formed with both nanoparticulate formulations of each drug analog, with an average size of 8.36 ± 3.21 and 12.19 ± 2.77 nm for the SK and SDK micelles and 29.56 ± 4.67 nm and 30.48 ± 7.00 nm for the SK and SDK cross-linked micelles respectively. All of the drug-loaded formulations showed a pH-dependent release of the drugs, which was accelerated as pH decreased from 7.4 to 5.0. The micelles retained biological activity of SK and SDK entrapped in the micelles, suppressing human A549 lung cancer cells effectively.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | | | | |
Collapse
|