1
|
Patel M, Riede J, Bednarczyk D, Poller B, Deshmukh SV. Simplifying the Extended Clearance Concept Classification System (EC3S) to Guide Clearance Prediction in Drug Discovery. Pharm Res 2023; 40:937-949. [PMID: 36859748 DOI: 10.1007/s11095-023-03482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The Extended Clearance Concept Classification System was established as a development-stage tool to provide a framework for identifying fundamental mechanism(s) governing drug disposition in humans. In the present study, the applicability of the EC3S in drug discovery has been investigated. In its current format, the EC3S relies on low-throughput hepatocyte uptake data, which are not frequently generated in a discovery setting. METHODS A relationship between hepatocyte uptake clearance and MDCK permeability was first established along with intrinsic clearance from human liver microsomes. The performance of this approach was examined by categorizing 64 drugs into EC3S classes and comparing the predicted major elimination pathway(s) to that observed in humans. As an extension of the work, the ability of the simplified EC3S to predict human systemic clearance based on intrinsic clearance generated using in-vitro metabolic systems was evaluated. RESULTS The assessment enabled the use of MDCK permeability and unscaled unbound intrinsic clearance to generate cut-off criteria to categorize compounds into four EC3S classes: Class 12ab, 2cd, 34ab, and 34cd, with major elimination mechanism(s) assigned to each class. The predictivity analysis suggested that systemic clearance could generally be predicted within threefold for EC3S class 12ab and 34ab compounds. For classes 2cd and 34cd, systemic clearance was poorly predicted using in-vitro systems explored in this study. CONCLUSION Collectively, our simplified classification approach is expected to facilitate the identification of mechanism(s) involved in drug elimination, faster resolution of in-vitro to in-vivo disconnects, and better design of mechanistic pharmacokinetic studies in drug discovery.
Collapse
Affiliation(s)
- Mitesh Patel
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue 2A/242, Cambridge, MA, 02139, USA
| | - Julia Riede
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue 2A/242, Cambridge, MA, 02139, USA
| | - Birk Poller
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sujal V Deshmukh
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue 2A/242, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Amano Y, Yamane M, Honda H. RAID: Regression Analysis–Based Inductive DNA Microarray for Precise Read-Across. Front Pharmacol 2022; 13:879907. [PMID: 35935858 PMCID: PMC9354856 DOI: 10.3389/fphar.2022.879907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical structure-based read-across represents a promising method for chemical toxicity evaluation without the need for animal testing; however, a chemical structure is not necessarily related to toxicity. Therefore, in vitro studies were often used for read-across reliability refinement; however, their external validity has been hindered by the gap between in vitro and in vivo conditions. Thus, we developed a virtual DNA microarray, regression analysis–based inductive DNA microarray (RAID), which quantitatively predicts in vivo gene expression profiles based on the chemical structure and/or in vitro transcriptome data. For each gene, elastic-net models were constructed using chemical descriptors and in vitro transcriptome data to predict in vivo data from in vitro data (in vitro to in vivo extrapolation; IVIVE). In feature selection, useful genes for assessing the quantitative structure–activity relationship (QSAR) and IVIVE were identified. Predicted transcriptome data derived from the RAID system reflected the in vivo gene expression profiles of characteristic hepatotoxic substances. Moreover, gene ontology and pathway analysis indicated that nuclear receptor-mediated xenobiotic response and metabolic activation are related to these gene expressions. The identified IVIVE-related genes were associated with fatty acid, xenobiotic, and drug metabolisms, indicating that in vitro studies were effective in evaluating these key events. Furthermore, validation studies revealed that chemical substances associated with these key events could be detected as hepatotoxic biosimilar substances. These results indicated that the RAID system could represent an alternative screening test for a repeated-dose toxicity test and toxicogenomics analyses. Our technology provides a critical solution for IVIVE-based read-across by considering the mode of action and chemical structures.
Collapse
|
3
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
4
|
Sodhi JK, Benet LZ. Successful and Unsuccessful Prediction of Human Hepatic Clearance for Lead Optimization. J Med Chem 2021; 64:3546-3559. [PMID: 33765384 PMCID: PMC8504179 DOI: 10.1021/acs.jmedchem.0c01930] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of new chemical entities is costly, time-consuming, and has a low success rate. Accurate prediction of pharmacokinetic properties is critical to progress compounds with favorable drug-like characteristics in lead optimization. Of particular importance is the prediction of hepatic clearance, which determines drug exposure and contributes to projection of dose, half-life, and bioavailability. The most commonly employed methodology to predict hepatic clearance is termed in vitro to in vivo extrapolation (IVIVE) that involves measuring drug metabolism in vitro, scaling-up this in vitro intrinsic clearance to a prediction of in vivo intrinsic clearance by reconciling the enzymatic content between the incubation and an average human liver, and applying a model of hepatic disposition to account for limitations of protein binding and blood flow to predict in vivo clearance. This manuscript reviews common in vitro techniques used to predict hepatic clearance as well as current challenges and recent theoretical advancements in IVIVE.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
5
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Peng Y, Cheng Z, Xie F. Evaluation of Pharmacokinetic Drug-Drug Interactions: A Review of the Mechanisms, In Vitro and In Silico Approaches. Metabolites 2021; 11:metabo11020075. [PMID: 33513941 PMCID: PMC7912632 DOI: 10.3390/metabo11020075] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
Pharmacokinetic drug–drug interactions (DDIs) occur when a drug alters the absorption, transport, distribution, metabolism or excretion of a co-administered agent. The occurrence of pharmacokinetic DDIs may result in the increase or the decrease of drug concentrations, which can significantly affect the drug efficacy and safety in patients. Enzyme-mediated DDIs are of primary concern, while the transporter-mediated DDIs are less understood but also important. In this review, we presented an overview of the different mechanisms leading to DDIs, the in vitro experimental tools for capturing the factors affecting DDIs, and in silico methods for quantitative predictions of DDIs. We also emphasized the power and strategy of physiologically based pharmacokinetic (PBPK) models for the assessment of DDIs, which can integrate relevant in vitro data to simulate potential drug interaction in vivo. Lastly, we pointed out the future directions and challenges for the evaluation of pharmacokinetic DDIs.
Collapse
Affiliation(s)
| | | | - Feifan Xie
- Correspondence: ; Tel.: +86-0731-8265-0446
| |
Collapse
|
8
|
Umehara K, Cantrill C, Wittwer MB, Di Lenarda E, Klammers F, Ekiciler A, Parrott N, Fowler S, Ullah M. Application of the Extended Clearance Classification System (ECCS) in Drug Discovery and Development: Selection of Appropriate In Vitro Tools and Clearance Prediction. Drug Metab Dispos 2020; 48:849-860. [PMID: 32739889 DOI: 10.1124/dmd.120.000133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
In vitro to in vivo extrapolation (IVIVE) to predict human hepatic clearance, including metabolism and transport, requires extensive experimental resources. In addition, there may be technical challenges to measure low clearance values. Therefore, prospective identification of rate-determining step(s) in hepatic clearance through application of the Extended Clearance Classification System (ECCS) could be beneficial for optimal compound characterization. IVIVE for hepatic intrinsic clearance (CLint,h) prediction is conducted for a set of 36 marketed drugs with low-to-high in vivo clearance, which are substrates of metabolic enzymes and active uptake transporters in the liver. The compounds were assigned to the ECCS classes, and CLint,h, estimated with HepatoPac (a micropatterned hepatocyte coculture system), was compared with values calculated based on suspended hepatocyte incubates. An apparent permeability threshold (apical to basal) of 50 nm/s in LLC-PK1 cells proved optimal for ECCS classification. A reasonable performance of the IVIVE for compounds across multiple classes using HepatoPac was achieved (with 2-3-fold error), except for substrates of uptake transporters (class 3b), for which scaling of uptake clearance using plated hepatocytes is more appropriate. Irrespective of the ECCS assignment, metabolic clearance can be estimated well using HepatoPac. The validation and approach elaborated in the present study can result in proposed decision trees for the selection of the optimal in vitro assays guided by ECCS class assignment, to support compound optimization and candidate selection. SIGNIFICANCE STATEMENT: Characterization of the rate-determining step(s) in hepatic elimination could be on the critical path of compound optimization during drug discovery. This study demonstrated that HepatoPac and plated hepatocytes are suitable tools for the estimation of metabolic and active uptake clearance, respectively, for a larger set of marketed drugs, supporting a comprehensive strategy to select optimal in vitro tools and to achieve Extended Clearance Classification System-dependent in vitro to in vivo extrapolation for human clearance prediction.
Collapse
Affiliation(s)
- Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Carina Cantrill
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Matthias Beat Wittwer
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Elisa Di Lenarda
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Florian Klammers
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Aynur Ekiciler
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Mohammed Ullah
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
9
|
Carter SJ, Ferecskó AS, King L, Ménochet K, Parton T, Chappell MJ. A mechanistic modelling approach for the determination of the mechanisms of inhibition by cyclosporine on the uptake and metabolism of atorvastatin in rat hepatocytes using a high throughput uptake method. Xenobiotica 2019; 50:415-426. [PMID: 31389297 DOI: 10.1080/00498254.2019.1652781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Choi GW, Lee YB, Cho HY. Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In Vitro-In Vivo Extrapolation and Allometric Scaling. Pharmaceutics 2019; 11:E168. [PMID: 30959827 PMCID: PMC6523982 DOI: 10.3390/pharmaceutics11040168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Extrapolation of pharmacokinetic (PK) parameters from in vitro or in vivo animal to human is one of the main tasks in the drug development process. Translational approaches provide evidence for go or no-go decision-making during drug discovery and the development process, and the prediction of human PKs prior to the first-in-human clinical trials. In vitro-in vivo extrapolation and allometric scaling are the choice of method for projection to human situations. Although these methods are useful tools for the estimation of PK parameters, it is a challenge to apply these methods since underlying biochemical, mathematical, physiological, and background knowledge of PKs are required. In addition, it is difficult to select an appropriate methodology depending on the data available. Therefore, this review covers the principles of PK parameters pertaining to the clearance, volume of distribution, elimination half-life, absorption rate constant, and prediction method from the original idea to recently developed models in order to introduce optimal models for the prediction of PK parameters.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea.
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Korea.
| |
Collapse
|
11
|
Liao M, Zhu Q, Zhu A, Gemski C, Ma B, Guan E, Li AP, Xiao G, Xia CQ. Comparison of uptake transporter functions in hepatocytes in different species to determine the optimal model for evaluating drug transporter activities in humans. Xenobiotica 2018; 49:852-862. [PMID: 30132394 DOI: 10.1080/00498254.2018.1512017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A thorough understanding of species-dependent differences in hepatic uptake transporters is critical for predicting human pharmacokinetics (PKs) from preclinical data. In this study, the activities of organic anion transporting polypeptide (OATP/Oatp), organic cation transporter 1 (OCT1/Oct1), and sodium-taurocholate cotransporting polypeptide (NTCP/Ntcp) in cultured rat, dog, monkey and human hepatocytes were compared. The activities of hepatic uptake transporters were evaluated with respect to culture duration, substrate and species-dependent differences in hepatocytes. Longer culture duration reduced hepatic uptake transporter activities across species except for Oatp and Ntcp in rats. Comparable apparent Michaelis-Menten constant (Km,app) values in hepatocytes were observed across species for atorvastatin, estradiol-17β-glucuronide and metformin. The Km,app values for rosuvastatin and taurocholate were significantly different across species. Rat hepatocytes exhibited the highest Oatp percentage of uptake transporter-mediated permeation clearance (PSinf,act) while no difference in %PSinf,act of probe substrates were observed across species. The in vitro hepatocyte inhibition data in rats, monkeys and humans provided reasonable predictions of in vivo drug-drug interaction (DDIs) between atorvastatin/rosuvastatin and rifampin. These findings suggested that using human hepatocytes with a short culture time is the most robust preclinical model for predicting DDIs for compounds exhibiting active hepatic uptake in humans.
Collapse
Affiliation(s)
| | - Qing Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Andy Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | | | - Bingli Ma
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Emily Guan
- a Takeda Pharmaceuticals, DMPK , Cambridge , MA , USA
| | | | - Guangqing Xiao
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Cindy Q Xia
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| |
Collapse
|
12
|
Dumouchel JL, Chemuturi N, Milton MN, Camenisch G, Chastain J, Walles M, Sasseville V, Gunduz M, Iyer GR, Argikar UA. Models and Approaches Describing the Metabolism, Transport, and Toxicity of Drugs Administered by the Ocular Route. Drug Metab Dispos 2018; 46:1670-1683. [DOI: 10.1124/dmd.118.082974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/10/2018] [Indexed: 11/22/2022] Open
|
13
|
Kratochwil NA, Triyatni M, Mueller MB, Klammers F, Leonard B, Turley D, Schmaler J, Ekiciler A, Molitor B, Walter I, Gonsard PA, Tournillac CA, Durrwell A, Marschmann M, Jones R, Ullah M, Boess F, Ottaviani G, Jin Y, Parrott NJ, Fowler S. Simultaneous Assessment of Clearance, Metabolism, Induction, and Drug-Drug Interaction Potential Using a Long-Term In Vitro Liver Model for a Novel Hepatitis B Virus Inhibitor. J Pharmacol Exp Ther 2018; 365:237-248. [PMID: 29453199 DOI: 10.1124/jpet.117.245712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/26/2018] [Indexed: 01/04/2023] Open
Abstract
Long-term in vitro liver models are now widely explored for human hepatic metabolic clearance prediction, enzyme phenotyping, cross-species metabolism, comparison of low clearance drugs, and induction studies. Here, we present studies using a long-term liver model, which show how metabolism and active transport, drug-drug interactions, and enzyme induction in healthy and diseased states, such as hepatitis B virus (HBV) infection, may be assessed in a single test system to enable effective data integration for physiologically based pharmacokinetic (PBPK) modeling. The approach is exemplified in the case of (3S)-4-[[(4R)-4-(2-Chloro-4-fluorophenyl)-5-methoxycarbonyl-2-thiazol-2-yl-1,4-dihydropyrimidin-6-yl]methyl]morpholine-3-carboxylic acid RO6889678, a novel inhibitor of HBV with a complex absorption, distribution, metabolism, and excretion (ADME) profile. RO6889678 showed an intracellular enrichment of 78-fold in hepatocytes, with an apparent intrinsic clearance of 5.2 µl/min per mg protein and uptake and biliary clearances of 2.6 and 1.6 µl/min per mg protein, respectively. When apparent intrinsic clearance was incorporated into a PBPK model, the simulated oral human profiles were in good agreement with observed data at low doses but were underestimated at high doses due to unexpected overproportional increases in exposure with dose. In addition, the induction potential of RO6889678 on cytochrome P450 (P450) enzymes and transporters at steady state was assessed and cotreatment with ritonavir revealed a complex drug-drug interaction with concurrent P450 inhibition and moderate UDP-glucuronosyltransferase induction. Furthermore, we report on the first evaluation of in vitro pharmacokinetics studies using HBV-infected HepatoPac cocultures. Thus, long-term liver models have great potential as translational research tools exploring pharmacokinetics of novel drugs in vitro in health and disease.
Collapse
Affiliation(s)
- Nicole A Kratochwil
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Miriam Triyatni
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Martina B Mueller
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Florian Klammers
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Brian Leonard
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Dan Turley
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Josephine Schmaler
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Aynur Ekiciler
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Birgit Molitor
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Isabelle Walter
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Pierre-Alexis Gonsard
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Charles A Tournillac
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Alexandre Durrwell
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Michaela Marschmann
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Russell Jones
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Mohammed Ullah
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Franziska Boess
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Giorgio Ottaviani
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Yuyan Jin
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Neil J Parrott
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| | - Stephen Fowler
- Pharmaceutical Sciences (N.A.K., M.B.M., F.K., A.E., B.M., I.W., P.-A.G., C.A.T., A.D., M.M., R.J., M.U., F.B., N.J.P., S.F.) and Inflammation, Immunology, and Infectious Diseases Therapeutic Areas (M.T., B.L., D.T., J.S.), Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; and Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche R&D Center (China) Ltd., Pudong, Shanghai, China (G.O., Y.Y.)
| |
Collapse
|
14
|
Wood FL, Houston JB, Hallifax D. Importance of the Unstirred Water Layer and Hepatocyte Membrane Integrity In Vitro for Quantification of Intrinsic Metabolic Clearance. Drug Metab Dispos 2017; 46:268-278. [PMID: 29233818 DOI: 10.1124/dmd.117.078949] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Prediction of clearance-a vital component of drug discovery-remains in need of improvement and, in particular, requires more incisive assessment of mechanistic methodology in vitro, according to a number of recent reports. Although isolated hepatocytes have become an irreplaceable standard system for the measurement of intrinsic hepatic clearance mediated by active uptake transport and metabolism, the lack of prediction reliability appears to reflect a lack of methodological validation, especially for highly cleared drugs, as we have previously shown. Here, novel approaches were employed to explore fundamental experimental processes and associated potential limitations of in vitro predictions of clearance. Rat hepatocytes deemed nonviable by trypan blue staining showed undiminished metabolic activity for probe cytochrome P450 (P450) substrates midazolam and propranolol; supplementation with NADPH enhanced these activities. Extensive permeabilization of the plasma membrane using saponin showed either full or minimal P450 activity, depending on the presence or absence of 1 mM NADPH, respectively. The shaking of incubations facilitated P450 metabolic rates up to 5-fold greater than static incubation, depending on intrinsic clearance, indicating the critical influence of the unstirred water layer (UWL). Permeabilization allowed static incubation metabolic rates to approach those of shaking for intact cells, indicating an artificially induced breakdown of the UWL. Permeabilization combined with shaking allowed an increased metabolic rate for saquinavir, resolving the membrane permeability limitation for this drug. These findings advance the interpretation of the rate-limiting processes involved in intrinsic clearance measurements and could be critical for successful in vitro prediction.
Collapse
Affiliation(s)
- Francesca L Wood
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
15
|
Wood FL, Houston JB, Hallifax D. Clearance Prediction Methodology Needs Fundamental Improvement: Trends Common to Rat and Human Hepatocytes/Microsomes and Implications for Experimental Methodology. Drug Metab Dispos 2017; 45:1178-1188. [DOI: 10.1124/dmd.117.077040] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023] Open
|
16
|
Riede J, Camenisch G, Huwyler J, Poller B. Current In Vitro Methods to Determine Hepatic Kp uu : A Comparison of Their Usefulness and Limitations. J Pharm Sci 2017; 106:2805-2814. [DOI: 10.1016/j.xphs.2017.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
|
17
|
Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2017; 147:297-312. [PMID: 28811111 DOI: 10.1016/j.jpba.2017.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
For ethical and cost-related reasons, use of animals for the assessment of mode of action, metabolism and/or toxicity of new drug candidates has been increasingly scrutinized in research and industrial applications. Implementation of the 3 "Rs"1; rule (Reduction, Replacement, Refinement) through development of in silico or in vitro assays has become an essential element of risk assessment. Physiologically based pharmacokinetic (PBPK2) modeling is the most potent in silico tool used for extrapolation of pharmacokinetic parameters to animal or human models from results obtained in vitro. Although, many types of in vitro assays are conducted during drug development, use of cell cultures is the most reliable one. Two-dimensional (2D) cell cultures have been a part of drug development for many years. Nowadays, their role is decreasing in favor of three-dimensional (3D) cell cultures and co-cultures. 3D cultures exhibit protein expression patterns and intercellular junctions that are closer to in vivo states in comparison to classical monolayer cultures. Co-cultures allow for examinations of the mutual influence of different cell lines. However, the complexity and high costs of co-cultures and 3D equipment exclude such methods from high-throughput screening (HTS).3In vitro absorption, distribution, metabolism, and excretion assessment, as well as drug-drug interaction (DDI), are usually performed with the use of various cell culture based assays. Progress in in silico and in vitro methods can lead to better in vitro-in vivo extrapolation (IVIVE4) outcomes and have a potential to contribute towards a significant reduction in the number of laboratory animals needed for drug research. As such, concentrated efforts need to be spent towards the development of an HTS in vitro platform with satisfactory IVIVE features.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland
| | - Alina Jaroch
- Department and Institute of Nutrition and Dietetics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3 Street, 85-626 Bydgoszcz, Poland; Department and Clinic of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Sklodowskiej 9 Street, 85-094 Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
18
|
Tetsuka K, Ohbuchi M, Tabata K. Recent Progress in Hepatocyte Culture Models and Their Application to the Assessment of Drug Metabolism, Transport, and Toxicity in Drug Discovery: The Value of Tissue Engineering for the Successful Development of a Microphysiological System. J Pharm Sci 2017; 106:2302-2311. [PMID: 28533121 DOI: 10.1016/j.xphs.2017.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Tissue engineering technology has provided many useful culture models. This article reviews the merits of this technology in a hepatocyte culture system and describes the applications of the sandwich-cultured hepatocyte model in drug discovery. In addition, we also review recent investigations of the utility of the 3-dimensional bioprinted human liver tissue model and spheroid model. Finally, we present the future direction and developmental challenges of a hepatocyte culture model for the successful establishment of a microphysiological system, represented as an organ-on-a-chip and even as a human-on-a-chip. A merit of advanced culture models is their potential use for detecting hepatotoxicity through repeated exposure to chemicals as they allow long-term culture while maintaining hepatocyte functionality. As a future direction, such advanced hepatocyte culture systems can be connected to other tissue models for evaluating tissue-to-tissue interaction beyond cell-to-cell interaction. This combination of culture models could represent parts of the human body in a microphysiological system.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan.
| | - Masato Ohbuchi
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| | - Kenji Tabata
- Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., 21 Miyukigaoka Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
19
|
Cantrill C, Houston JB. Understanding the Interplay Between Uptake and Efflux Transporters Within In Vitro Systems in Defining Hepatocellular Drug Concentrations. J Pharm Sci 2017; 106:2815-2825. [PMID: 28478131 DOI: 10.1016/j.xphs.2017.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
One of the most holistic in vitro systems for prediction of intracellular drug concentrations is sandwich-cultured hepatocytes (SCH); however, a comprehensive evaluation of the utility of SCH to estimate uptake and biliary clearances and the need for additional kinetic parameters has yet to be carried out. Toward this end, we have selected 9 compounds (rosuvastatin, valsartan, fexofenadine, pravastatin, repaglinide, telmisartan, atorvastatin, saquinavir, and quinidine) to provide a range of physicochemical and hepatic disposition properties. Uptake clearances were determined in SCH and compared with conventional monolayer and suspension hepatocyte systems, previously reported by our laboratory. CLuptake ranged from 1 to 41 μL/min/106 cells in SCH which were significantly lower (1%-10%) compared with the other hepatocyte models. The hepatocyte-to-media unbound concentration ratio (Kpu) has been assessed and ranged 0.7-59, lower compared with other hepatocyte systems (8-280). Estimates of in vitro biliary clearance (CLbile) for 4 drugs were determined and were scaled to predict in vivo values using both intracellular concentration and media drug concentrations. These studies demonstrate that reduced uptake in rat SCH may limit drug access to canalicular efflux transport proteins and highlight the importance of elucidating the interplay between these proteins for accurate prediction of hepatic clearance.
Collapse
Affiliation(s)
- Carina Cantrill
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK.
| |
Collapse
|
20
|
Riede J, Poller B, Huwyler J, Camenisch G. Assessing the Risk of Drug-Induced Cholestasis Using Unbound Intrahepatic Concentrations. Drug Metab Dispos 2017; 45:523-531. [DOI: 10.1124/dmd.116.074179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
|
21
|
Drug Disposition Classification Systems in Discovery and Development: A Comparative Review of the BDDCS, ECCS and ECCCS Concepts. Pharm Res 2016; 33:2583-93. [DOI: 10.1007/s11095-016-2001-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
|
22
|
Kunze A, Poller B, Huwyler J, Camenisch G. Application of the extended clearance concept classification system (ECCCS) to predict the victim drug-drug interaction potential of statins. Drug Metab Pers Ther 2016; 30:175-88. [PMID: 25996489 DOI: 10.1515/dmdi-2015-0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND During drug development, it is an important safety factor to identify the potential of new molecular entities to become a victim of drug-drug interactions (DDIs). In preclinical development, however, anticipation of clinical DDIs remains challenging due to the lack of in vivo human pharmacokinetic data. METHODS We applied a recently developed in vitro-in vivo extrapolation method, including hepatic metabolism and transport processes, herein referred to as the Extended Clearance Concept Classification System (ECCCS). The human hepatic clearances and the victim DDI potentials were predicted for atorvastatin, cerivastatin, fluvastatin, lovastatin acid, pitavastatin, pravastatin, rosuvastatin, and simvastatin acid. RESULTS Hepatic statin clearances were well-predicted by the ECCCS with six out of eight clearances projected within a two-fold deviation to reported values. In addition, worst-case DDI predictions were projected for each statin. Based on the ECCCS class assignment (4 classes), the mechanistic interplay of metabolic and transport processes, resulting in different DDI risks, was well-reflected by our model. Furthermore, predictions of clinically observed statins DDIs in combination with relevant perpetrator drugs showed good quantitative correlations with clinical observations. CONCLUSIONS The ECCCS represents a powerful tool to anticipate the DDI potential of victim drugs based on in vitro drug metabolism and transport data.
Collapse
|
23
|
Fan PW, Chen JZ, Allan Jaochico M, La H, Liu N, Mulder T, Cass RT, Durk M, Messick K, Valle N, Liu S, Lee W, Crawford JJ, Rudolf J, Murray LJ, Cyrus Khojasteh S, Wright M. Rate-Determining and Rate-Limiting Steps in the Clearance and Excretion of a Potent and Selective p21-Activated Kinase Inhibitor: A Case Study of Rapid Hepatic Uptake and Slow Elimination in Rat. Drug Metab Lett 2016; 10:91-100. [PMID: 27063863 PMCID: PMC5405622 DOI: 10.2174/1872312810666160411144358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Significant under-prediction of in vivo clearance in rat was observed for a potent p21-activated kinase (PAK1) inhibitor, GNE1. OBJECTIVE Rate-determining (rapid uptake) and rate-limiting (slow excretion) steps in systemic clearance and elimination of GNE1, respectively, were evaluated to better understand the cause of the in vitro-in vivo (IVIV) disconnect. METHODS A series of in vivo, ex vivo, and in vitro experiments were carried out: 1) the role of organic cation transporters (Oct or Slc22a) was investigated in transporter knock-out and wild-type animals with or without 1-aminobenzotriazole (ABT) pretreatment; 2) the concentration-dependent hepatic extraction ratio was determined in isolated perfused rat liver; and 3) excreta were collected from both bile duct cannulated and non-cannulated rats after intravenous injection. RESULTS After intravenous dosing, the rate-determining step in clearance was found to be mediated by the active uptake transporter, Oct1. In cannulated rats, biliary and renal clearance of GNE1 accounted for only approximately 14 and 16% of the total clearance, respectively. N-acetylation, an important metabolic pathway, accounted for only about 10% of the total dose. In non-cannulated rats, the majority of the dose was recovered in feces as unchanged parent (up to 91%) overnight following intravenous administration. CONCLUSION Because the clearance of GNE1 is mediated through uptake transporters rather than metabolism, the extrahepatic expression of Oct1 in kidney and intestine in rat likely plays an important role in the IVIV disconnect in hepatic clearance prediction. The slow process of intestinal secretion is the rate-limiting step for in vivo clearance of GNE1.
Collapse
Affiliation(s)
- Peter W Fan
- Genentech, Inc. 1 DNA Way, MS 412a, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data. Eur J Pharm Sci 2016; 86:96-102. [PMID: 26948853 DOI: 10.1016/j.ejps.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022]
Abstract
Total human clearance is a key determinant for the pharmacokinetic behavior of drug candidates. Our group recently introduced the Extended Clearance Model (ECM) as an accurate in vitro-in vivo extrapolation (IVIVE) method for the prediction of hepatic clearance. Yet, knowledge about relative elimination pathway contributions is needed in order to predict the total human clearance of drug candidates. In the present work, a training set of 18 drug compounds was used to describe the affiliations between in vitro sinusoidal uptake clearance and the fractional contributions of hepatic (metabolic and biliary) or renal clearance to overall in vivo elimination. By means of these quantitative relationships and using a validation set of 10 diverse drug molecules covering different (sub)classes of the Extended Clearance Concept Classification System (ECCCS), the relative contributions of elimination pathways were calculated and demonstrated to well correlate with human reference data. Likewise, ECM- and pathway-based predictions of total clearances from both data sets demonstrated a strong correlation with the observed clinical values with 26 out of 28 compounds within a three-fold deviation. Hence, total human clearance and relative contributions of elimination pathways were successfully predicted by the presented method using solely hepatocyte and microsome in vitro data.
Collapse
|
25
|
De Bruyn T, Augustijns PF, Annaert PP. Hepatic Clearance Prediction of Nine Human Immunodeficiency Virus Protease Inhibitors in Rat. J Pharm Sci 2016. [PMID: 26202434 DOI: 10.1002/jps.24559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to determine the rate-limiting step in the overall hepatic clearance of the marketed human immunodeficiency virus (HIV) protease inhibitors (PI) in rats by predicting the experimentally determined hepatic in vivo clearance of these drugs based on in vitro clearance values for uptake and/or metabolism. In vitro uptake and metabolic clearance values were determined in suspended rat hepatocytes and rat liver microsomes, respectively. In vivo hepatic clearance was determined after intravenous bolus administration in rats. Excellent in vitro-in vivo correlation (IVIVC; R(2) = 0.80) was observed when metabolic intrinsic Cl values were used, which were determined in vitro at a single concentration corresponding to the blood concentration observed in rats in vivo at the mean residence time. On the contrary, poor IVIVC was observed when in vitro metabolic Cl values based on full Michaelis-Menten profiles were used. In addition, the use of uptake Cl values or a combination of both uptake and metabolic clearance data led to poor predictions of in vivo clearance. Although our findings indicate a key role for metabolism in the hepatic clearance of several HIV PI in rats, subsequent simulations revealed that inhibition of hepatic uptake can lead to altered hepatic clearance for several of these drugs.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium
| | - Patrick F Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium
| | - Pieter P Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven 3000, Belgium.
| |
Collapse
|
26
|
Nicolai J, De Bruyn T, Thevelin L, Augustijns P, Annaert P. Transport-Metabolism Interplay of Atazanavir in Rat Hepatocytes. Drug Metab Dispos 2015; 44:389-97. [DOI: 10.1124/dmd.115.068114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
|
27
|
Keemink J, Wuyts B, Nicolaï J, Jonghe SD, Stella A, Herdewijn P, Augustijns P, Annaert P. In vitro disposition profiling of heterocyclic compounds. Int J Pharm 2015; 491:78-90. [DOI: 10.1016/j.ijpharm.2015.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 12/11/2022]
|
28
|
Nicolaï J, De Bruyn T, Van Veldhoven PP, Keemink J, Augustijns P, Annaert P. Verapamil hepatic clearance in four preclinical rat models: towards activity-based scaling. Biopharm Drug Dispos 2015; 36:462-80. [PMID: 25963583 DOI: 10.1002/bdd.1959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
The current study was designed to cross-validate rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and the isolated perfused rat liver (IPRL) model against in vivo pharmacokinetic data, using verapamil as a model drug. Michaelis-Menten constants (Km), for the metabolic disappearance kinetics of verapamil in RLM and SRH (freshly isolated and cryopreserved), were determined and corrected for non-specific binding. The 'unbound' Km determined with RLM (2.8 µM) was divided by the 'unbound' Km determined with fresh and cryopreserved SRH (3.9 µM and 2.1 µM, respectively) to calculate the ratio of intracellular to extracellular unbound concentration (Kpu,u). Kpu,u was significantly different between freshly isolated (0.71) and cryopreserved (1.31) SRH, but intracellular capacity for verapamil metabolism was maintained after cryopreservation (200 vs. 191 µl/min/million cells). Direct comparison of intrinsic clearance values (Clint) in RLM versus SRH, yielded an activity-based scaling factor (SF) of 0.28-0.30 mg microsomal protein/million cells (MPPMC). Merging the IPRL-derived Clint with the MPPMC and SRH data, resulted in scaling factors for MPPGL (80 and 43 mg microsomal protein/g liver) and HPGL (269 and 153 million cells/g liver), respectively. Likewise, the hepatic blood flow (61 ml/min/kg b.wt) was calculated using IPRL Clint and the in vivo Cl. The scaling factors determined here are consistent with previously reported CYP450-content based scaling factors. Overall, the results show that integrated interpretation of data obtained with multiple preclinical tools (i.e. RLM, SRH, IPRL) can contribute to more reliable estimates for scaling factors and ultimately to improved in vivo clearance predictions based on in vitro experimentation.
Collapse
Affiliation(s)
- J Nicolaï
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - T De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven Department of Cellular and Molecular Medicine, O&N1, Leuven, Belgium
| | - J Keemink
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| |
Collapse
|
29
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Practical permeability-based hepatic clearance classification system (HepCCS) in drug discovery. Future Med Chem 2014; 6:1995-2012. [DOI: 10.4155/fmc.14.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: The use of liver microsomes and hepatocytes to predict total in vivo clearance is standard practice in the pharmaceutical industry; however, metabolic stability data alone cannot always predict in vivo clearance accurately. Results: Apparent permeability generated from Mardin–Darby canine kidney cells and rat hepatocyte uptake for 33 discovery compounds were obtained. Conclusion: When there is underprediction of in vivo clearance, compounds with low apparent permeability (less than 3 × 10-6 cm/s) all exhibited hepatic uptake. A systematic approach in the form of a classification system (hepatic clearance classification system) and decision tree that will help drug discovery scientists understand in vitro–in vivo clearance prediction disconnect early is proposed.
Collapse
|
31
|
Kunze A, Huwyler J, Camenisch G, Poller B. Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos 2014; 42:1514-21. [PMID: 24989890 DOI: 10.1124/dmd.114.058412] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 are drug transporters mediating the active hepatic uptake of their substrates. Because they exhibit overlapping substrate specificities, the contribution of each isoform to the net hepatic uptake needs to be considered when predicting drug-drug interactions. The relative contribution of OATP1B1- and OATP1B3-mediated uptake of statins into hepatocytes was estimated based on either relative transporter protein expression data or relative activity data. Therefore, kinetics of eight statins and OATP1B1- and OATP1B3-specific reference substrates was determined in OATP1B1- and OATP1B3-expressing human embryonic kidney 293 cells and in human cryopreserved hepatocytes. Absolute OATP1B1 and OATP1B3 protein abundance was determined by liquid chromatography-tandem mass spectrometry in all expression systems. Transporter activity data generated in recombinant cell lines were extrapolated to hepatocyte values using relative transporter expression factors (REF) or relative activity factors (RAF). Our results showed a pronounced OATP1B1 and comparatively low OATP1B3 protein expression in the investigated hepatocyte lot. Based on REF scaling, we demonstrated that the active hepatic uptake clearances of reference substrates, atorvastatin, pravastatin, rosuvastatin, and simvastatin were well predicted within twofold error, demonstrating that OATP1B1 and OATP1B3 were major contributors. For other statins, the net hepatic uptake clearance was underpredicted, suggesting the involvement of other hepatic uptake transporters. Summarized, we showed that REF- and RAF-based predictions were highly similar, indicating a direct transporter expression-activity relationship. Moreover, we demonstrated that the REF-scaling method provided a powerful tool to quantitatively assess the transporter-specific contributions to the net uptake clearance of statins in hepatocytes.
Collapse
Affiliation(s)
- Annett Kunze
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (A.K., G.C., B.P.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (A.K., J.H.)
| | - Jörg Huwyler
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (A.K., G.C., B.P.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (A.K., J.H.)
| | - Gian Camenisch
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (A.K., G.C., B.P.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (A.K., J.H.)
| | - Birk Poller
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, Switzerland (A.K., G.C., B.P.); and Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland (A.K., J.H.)
| |
Collapse
|
32
|
Yu T, Chen X, Wang Y, Zhao R, Mao S. Modulatory effects of extracts of vinegar-baked Radix Bupleuri and saikosaponins on the activity of cytochrome P450 enzymesin vitro. Xenobiotica 2014; 44:861-7. [DOI: 10.3109/00498254.2014.914600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Kunze A, Huwyler J, Poller B, Gutmann H, Camenisch G. In vitro-in vivo extrapolation method to predict human renal clearance of drugs. J Pharm Sci 2014; 103:994-1001. [PMID: 24549735 DOI: 10.1002/jps.23851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/07/2022]
Abstract
Renal clearance is a key determinant of the elimination of drugs. To date, only few in vitro-in vivo extrapolation (IVIVE) approaches have been described to predict the renal organ clearance as the net result of glomerular filtration, tubular secretion, and tubular reabsorption. In this study, we measured in LLC-PK1 cells the transport of 20 compounds that cover all four classes of the Biopharmaceutical Drug Disposition System. These data were incorporated into a novel kidney model to predict all renal clearance processes in human. We showed that filtration and secretion were main contributors to the renal organ clearance for all compounds, whereas reabsorption was predominant for compounds assigned to classes 1 and 2. Our results suggest that anionic drugs were not significantly secreted in LLC-PK1 cells, resulting in under-predicted clearances. When all study compounds were included a high overall correlation between the reported and predicted renal organ clearances was obtained (R² = 0.83). The prediction accuracy in terms of percentage within twofold and threefold error was 70% and 95%, respectively. In conclusion, our novel IVIVE method allowed to predict the human renal organ clearance and the contribution of each underlying process.
Collapse
Affiliation(s)
- Annett Kunze
- Division of Drug Metabolism and Pharmacokinetics, Drug-Drug Interactions Section, Novartis Institutes for BioMedical Research, Basel, CH-4056, Switzerland; Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Tetsuka K, Gerst N, Tamura K, Masters JN. Glucuronidation and Subsequent Biliary Excretion of Mycophenolic Acid in Rat Sandwich-cultured Hepatocytes. Drug Metab Pharmacokinet 2014; 29:129-34. [DOI: 10.2133/dmpk.dmpk-13-rg-050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Fasinu PS, Gutmann H, Schiller H, Bouic PJ, Rosenkranz B. The potential of Hypoxis hemerocallidea for herb-drug interaction. PHARMACEUTICAL BIOLOGY 2013; 51:1499-507. [PMID: 23844611 DOI: 10.3109/13880209.2013.796393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Aqueous decoction of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) (Hypoxis) is widely consumed in Southern Africa by people living with HIV/AIDS, some of whom are on ARV and other medications. OBJECTIVE The aim of this study was to investigate the potential of the crude aqueous extracts of Hypoxis to inhibit major forms of CYP450 and transport proteins. MATERIALS AND METHODS Corms of Hypoxis were water-extracted and incubated (in graded concentrations: 1-100 µg/mL) with human liver microsomes (20 min) to monitor the effects on phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, paclitaxel 6α-hydroxylation, diclofenac 4'-hydroxylation, S-mephenytoin 4'-hydroxylation, bufuralol 1'-hydroxylation, chlorzoxazone 6-hydroxylation, midazolam 1'-hydroxylation and testosterone 6β-hydroxylation as markers for the metabolic activities of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4/5, respectively. The generation of metabolites were monitored and quantified with the aid of LC-MS/MS. The potential of the extracts to inhibit human ATP-binding cassette transporter activity was assessed using recombinant MDCKII and LLC-PK1 cells over-expressing human breast cancer resistant protein and human P-glycoprotein , respectively (with Ko143 and cyclosporin A as positive controls). Similar assessment was performed with human organic anion transporting polypeptide (OATP1B1 and OATP1B3) using recombinant HEK293 cells over-expressing OATP1B1 and OATP1B3, respectively (with rifamycin and 10 µM atorvastatin as positive controls). RESULTS Extracts of Hypoxis inhibited the production of the metabolites of the substrates of the following enzymes (as compared to controls) with the indicated IC50 values (µg/mL): CYP1A2 (120.6), CYP2A6 (210.8), CYP2B6 (98.5), CYP2C8 (195.2), CYP2C9 (156) and CYP3A4/5 (185.4). The inhibition of the uptake activity of OATP1B1 and OATP1B3 were also observed with IC50 values of 93.4 and 244.8 μg/mL, respectively. DISCUSSION Extract concentrations higher than the estimated IC50 values are achievable in the gastrointestinal tract when traditional doses of Hypoxis are considered. This may have profound effects on presystemic metabolism of the drug substrates. If absorbed, systemic inhibition of metabolic enzymes/transporters by Hypoxis may be expected. CONCLUSION The result suggests that there is the potential for HDI between Hypoxis and the substrates of the affected enzymes/transporters, if sufficient in vivo concentration of Hypoxis extracts is attained.
Collapse
Affiliation(s)
- Pius S Fasinu
- Division of Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch , Cape Town , South Africa
| | | | | | | | | |
Collapse
|
36
|
Costa A, Sarmento B, Seabra V. An evaluation of the latestin vitrotools for drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:103-19. [DOI: 10.1517/17425255.2014.857402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS. A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 2013; 41:1975-93. [PMID: 24065860 DOI: 10.1124/dmd.113.054031] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Prediction of human pharmacokinetics of new drugs, as well as other disposition attributes, has become a routine practice in drug research and development. Prior to the 1990s, drug disposition science was used in a mostly descriptive manner in the drug development phase. With the advent of in vitro methods and availability of human-derived reagents for in vitro studies, drug-disposition scientists became engaged in the compound design phase of drug discovery to optimize and predict human disposition properties prior to nomination of candidate compounds into the drug development phase. This has reaped benefits in that the attrition rate of new drug candidates in drug development for reasons of unacceptable pharmacokinetics has greatly decreased. Attributes that are predicted include clearance, volume of distribution, half-life, absorption, and drug-drug interactions. In this article, we offer our experience-based perspectives on the tools and methods of predicting human drug disposition using in vitro and animal data.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | |
Collapse
|
38
|
Poulin P, Haddad S. Toward a new paradigm for the efficient in vitro–in vivo extrapolation of metabolic clearance in humans from hepatocyte data. J Pharm Sci 2013; 102:3239-51. [DOI: 10.1002/jps.23502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/18/2023]
|
39
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
40
|
Poulin P. Prediction of Total Hepatic Clearance by Combining Metabolism, Transport, and Permeability Data in the In Vitro–In Vivo Extrapolation Methods: Emphasis on an Apparent Fraction Unbound in Liver for Drugs. J Pharm Sci 2013; 102:2085-95. [DOI: 10.1002/jps.23562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
|
41
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, Ishikawa T, Jamei M, Kalvass JC, Nagar S, Pang KS, Korzekwa K, Swaan PW, Taub ME, Zhao P, Galetin A. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther 2013; 94:64-79. [PMID: 23588311 DOI: 10.1038/clpt.2013.45] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug-drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science.
Collapse
Affiliation(s)
- M J Zamek-Gliszczynski
- Drug Disposition, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
44
|
Yin J, Qiu H, Dai J, Lu Y, Zhao R, Chen L, Meng Q. Prediction of hepatic plasma clearance in vivo from gel-entrapped rat and human hepatocytes. Can J Physiol Pharmacol 2013; 91:178-86. [DOI: 10.1139/cjpp-2012-0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper aimed to evaluate the applicability of gel-entrapped rat and human hepatocytes in the prediction of hepatic plasma clearance (CLh,plasma) in vivo. The in vitro intrinsic clearances (CLint,in vitro) for the selected compounds were determined from the substrate disappearance rate, and further used to predict CLh,plasma using 3 classical mathematical models (well-stirred, parallel-tube, and dispersion) and disregarding drug binding. As a result, the predicted values from gel-entrapped rat hepatocytes were mostly within 2 SE of the literature data with a high correlation coefficient (R2) of 0.88–0.91. The predicted data with human hepatocytes also fitted well with the clinical data, indicating a high accuracy in prediction of in-vivo clearance. With respect to the mathematical model for predicting CLh,plasma, the parallel-tube and dispersion models produced a better prediction than the well-stirred model, and we suggest using the parallel-tube model because it is less complex mathematically. In conclusion, gel-entrapped hepatocytes predicted the drug clearance well and seemed to be a useful tool in the process of drug discovery.
Collapse
Affiliation(s)
- Jian Yin
- Department of Chemical and Biochemical Engineering, Zhejiang University, 38 Zheda Road, Zhejiang 310027, P.R. China
| | - Hongxia Qiu
- Roche R&D Center (China) Ltd., Building 5, 720 Cailun Road, Shanghai 201203, P.R. China
| | - Jing Dai
- Department of Chemical and Biochemical Engineering, Zhejiang University, 38 Zheda Road, Zhejiang 310027, P.R. China
| | - Yanhua Lu
- Department of Chemical and Biochemical Engineering, Zhejiang University, 38 Zheda Road, Zhejiang 310027, P.R. China
| | - Rong Zhao
- Roche R&D Center (China) Ltd., Building 5, 720 Cailun Road, Shanghai 201203, P.R. China
| | - Li Chen
- Roche R&D Center (China) Ltd., Building 5, 720 Cailun Road, Shanghai 201203, P.R. China
| | - Qin Meng
- Department of Chemical and Biochemical Engineering, Zhejiang University, 38 Zheda Road, Zhejiang 310027, P.R. China
| |
Collapse
|
45
|
Barton HA, Lai Y, Goosen TC, Jones HM, El-Kattan AF, Gosset JR, Lin J, Varma MV. Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opin Drug Metab Toxicol 2013; 9:459-72. [DOI: 10.1517/17425255.2013.759210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Fasinu PS, Gutmann H, Schiller H, James AD, Bouic PJ, Rosenkranz B. The Potential of Sutherlandia frutescens for Herb-Drug Interaction. Drug Metab Dispos 2012; 41:488-97. [DOI: 10.1124/dmd.112.049593] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Poulin P, Hop CECA, Ho Q, Halladay JS, Haddad S, Kenny JR. Comparative assessment of In Vitro-In Vivo extrapolation methods used for predicting hepatic metabolic clearance of drugs. J Pharm Sci 2012; 101:4308-26. [PMID: 22890957 DOI: 10.1002/jps.23288] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 07/17/2012] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to perform a comparative analysis of various in vitro--in vivo extrapolation (IVIVE) methods used for predicting hepatic metabolic clearance (CL) of drugs on the basis of intrinsic CL data determined in microsomes. Five IVIVE methods were evaluated: the "conventional and conventional bias-corrected methods" using the unbound fraction in plasma (fu(p) ), the "Berezhkovskiy method" in which the fu(p) is adjusted for drug ionization, the "Poulin et al. method" using the unbound fraction in liver (fu(liver) ), and the "direct scaling method," which does not consider any binding corrections. We investigated the effects of the following scenarios on the prediction of CL: the use of preclinical or human datasets, the extent of plasma protein binding, the magnitude of CL in vivo, and the extent of drug disposition based on biopharmaceutics drug disposition classification system (BDDCS) categorization. A large and diverse dataset of 139 compounds was collected, including those from the literature and in house from Genentech. The results of this study confirm that the Poulin et al. method is robust and showed the greatest accuracy as compared with the other IVIVE methods in the majority of prediction scenarios studied here. The difference across the prediction methods is most pronounced for (a) albumin-bound drugs, (b) highly bound drugs, and (c) low CL drugs. Predictions of CL showed relevant interspecies differences for BDDCS class 2 compounds; the direct scaling method showed the greatest predictivity for these compounds, particularly for a reduced dataset in rat that have unexpectedly high CL in vivo. This result is a reflection of the direct scaling method's natural tendency to overpredict the true metabolic CL. Overall, this study should facilitate the use of IVIVE correlation methods in physiologically based pharmacokinetics (PBPK) model.
Collapse
Affiliation(s)
- Patrick Poulin
- Consultant, 4009 Sylvia Daoust, Québec City, Québec G1X 0A6, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Fasinu PS, Bouic PJ, Rosenkranz B. An overview of the evidence and mechanisms of herb-drug interactions. Front Pharmacol 2012; 3:69. [PMID: 22557968 PMCID: PMC3339338 DOI: 10.3389/fphar.2012.00069] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/05/2012] [Indexed: 12/22/2022] Open
Abstract
Despite the lack of sufficient information on the safety of herbal products, their use as alternative and/or complementary medicine is globally popular. There is also an increasing interest in medicinal herbs as precursor for pharmacological actives. Of serious concern is the concurrent consumption of herbal products and conventional drugs. Herb-drug interaction (HDI) is the single most important clinical consequence of this practice. Using a structured assessment procedure, the evidence of HDI presents with varying degree of clinical significance. While the potential for HDI for a number of herbal products is inferred from non-human studies, certain HDIs are well established through human studies and documented case reports. Various mechanisms of pharmacokinetic HDI have been identified and include the alteration in the gastrointestinal functions with consequent effects on drug absorption; induction and inhibition of metabolic enzymes and transport proteins; and alteration of renal excretion of drugs and their metabolites. Due to the intrinsic pharmacologic properties of phytochemicals, pharmacodynamic HDIs are also known to occur. The effects could be synergistic, additive, and/or antagonistic. Poor reporting on the part of patients and the inability to promptly identify HDI by health providers are identified as major factors limiting the extensive compilation of clinically relevant HDIs. A general overview and the significance of pharmacokinetic and pharmacodynamic HDI are provided, detailing basic mechanism, and nature of evidence available. An increased level of awareness of HDI is necessary among health professionals and drug discovery scientists. With the increasing number of plant-sourced pharmacological actives, the potential for HDI should always be assessed in the non-clinical safety assessment phase of drug development process. More clinically relevant research is also required in this area as current information on HDI is insufficient for clinical applications.
Collapse
Affiliation(s)
- Pius S. Fasinu
- Division of Pharmacology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
| | - Patrick J. Bouic
- Division of Medical Microbiology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
- Synexa Life Sciences, Montague GardensCape Town, South Africa
| | - Bernd Rosenkranz
- Division of Pharmacology, Faculty of Health Sciences, University of StellenboschCape Town, South Africa
| |
Collapse
|
49
|
Camenisch G, Umehara KI. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions. Biopharm Drug Dispos 2012; 33:179-94. [DOI: 10.1002/bdd.1784] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 01/15/2023]
Affiliation(s)
- Gian Camenisch
- Drug-Drug Interaction Section, Drug Metabolism and Pharmacokinetics, Novartis Institutes of Biomedical Research; CH-4002; Basel; Switzerland
| | - Ken-ichi Umehara
- Drug-Drug Interaction Section, Drug Metabolism and Pharmacokinetics, Novartis Institutes of Biomedical Research; CH-4002; Basel; Switzerland
| |
Collapse
|
50
|
Akabane T, Gerst N, Masters JN, Tamura K. A quantitative approach to hepatic clearance prediction of metabolism by aldehyde oxidase using custom pooled hepatocytes. Xenobiotica 2012; 42:863-71. [DOI: 10.3109/00498254.2012.670736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|