1
|
Wu JJ, Chen SH, Lee CH, Li YZ, Hsu YW, Hsieh MY, Lee YR. Flavopereirine exerts anti-cancer activities in various human thyroid cancer cells. Am J Cancer Res 2024; 14:3317-3334. [PMID: 39113866 PMCID: PMC11301305 DOI: 10.62347/minx1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid cancer (TC) stands out as the most prevalent endocrine malignancy globally, with a steadily increasing incidence. Its clinical manifestations include enlarged thyroid nodules, dysphagia, enophthalmos, and various other symptoms. While standard treatments such as thyroidectomy and radioiodine therapy effectively manage most cases of differentiated thyroid cancers (DTC), some recurrent cases of DTC or those involving poorly differentiated thyroid cancers (PDTC) require specialized interventions. However, existing drugs primarily address symptom management without offering a curative solution. Therefore, the development of a new therapeutic agent for these challenging cases is of utmost importance. Flavopereirine, derived from Geissospermum vellosii, has demonstrated promise as a potential anti-cancer agent across various human cancers. However, its specific anti-cancer effects on human thyroid cancer (TC) have remained unclear. Therefore, this study aims to investigate the anti-cancer activity of flavopereirine in human TC. The research findings revealed that flavopereirine effectively hinders the growth of human TC cells, induces cell cycle arrest, promotes apoptosis, and modulates autophagy. Moreover, the study delved into the underlying mechanisms by which flavopereirine influenced signaling pathways. To validate these anti-cancer effects, an in vivo zebrafish model was utilized, confirming the efficacy of flavopereirine against human TC cells. In summary, this study establishes that flavopereirine exhibits notable anti-human TC activities, positioning it as a promising therapeutic candidate for the treatment of human thyroid cancer.
Collapse
Affiliation(s)
- Jung-Ju Wu
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Yi-Zhen Li
- Bone and Joint Research Center, Chang Gung Memorial HospitalTaoyuan 333, Taiwan
| | - Yu-Wei Hsu
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Ming-Ying Hsieh
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
2
|
Chen X, Zhong Y, Wang S, Xu S, Chen J, Cheng X, Yang X. Reversine inhibits proliferation and induces apoptosis of human osteosarcoma cells through targeting MEK1. J Bone Oncol 2024; 46:100601. [PMID: 38706714 PMCID: PMC11063522 DOI: 10.1016/j.jbo.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Reversine, or 2-(4-morpholinoanilino)-6-cyclohexylaminopurine, is a 2,6-disubstituted purine derivative. This small molecule shows anti-tumor potential by playing a central role in the inhibition of several kinases related to cell cycle regulation and cytokinesis. In this study, systematic review demonstrated the feasibility and pharmacological mechanism of anti-tumor effect of reversine. Firstly, we grafted MNNG/HOS, U-2 OS, MG-63 osteosarcoma cell aggregates onto chicken embryonic chorioallantoic membrane (CAM) to examine the tumor volume of these grafts after reversine treatment. Following culture, reversine inhibited the growth of osteosarcoma cell aggregates on CAM significantly. In vitro experiment, reversine suppressed osteosarcoma cell viability, colony formation, proliferation, and induced apoptosis and cell cycle arrest at G0-G1 phase. Scratch wound assay demonstrated that reversine restrained cell migration. Reversine increased the protein expression of E-cadherin. The mRNA expression of Rac1, RhoA, CDC42, PTK2, PXN, N-cadherin, Vimentin in MNNG/HOS, U-2 OS and MG-63 cells were suppressed and PTEN increased after reversine treatment. Network pharmacology prediction, molecular docking and systematic review revealed MEK1 can be used as an effective target for reversine to inhibit osteosarcoma. Western blot results show the regulation of MEK1 and ERK1/2 by reversine was not consistent in different osteosarcoma cell lines, but we found that reversine significantly inhibited the protein expression of MEK1 in MNNG/HOS, U-2 OS and MG-63. All these suggested that reversine can exert its anti-tumor effect by targeting the expression of MEK1.
Collapse
Affiliation(s)
- Xianlong Chen
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
| | - Yeyin Zhong
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
| | - Simiao Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
| | - Shujie Xu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junyuan Chen
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou 510632, China
- Clinical Research Center, Clifford Hospital, Guangzhou 511495, China
| |
Collapse
|
3
|
Marto CM, Laranjo M, Gonçalves AC, Paula A, Jorge J, Caetano-Oliveira R, Sousa MI, Oliveiros B, Ramalho-Santos J, Sarmento-Ribeiro AB, Marques-Ferreira M, Cabrita A, Botelho MF, Carrilho E. In Vitro Characterization of Reversine-Treated Gingival Fibroblasts and Their Safety Evaluation after In Vivo Transplantation. Pharmaceutics 2024; 16:207. [PMID: 38399261 PMCID: PMC10892828 DOI: 10.3390/pharmaceutics16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Reversine is a purine derivative that has been investigated with regard to its biological effects, such as its anticancer properties and, mostly, its ability to induce the dedifferentiation of adult cells, increasing their plasticity. The obtained dedifferentiated cells have a high potential for use in regenerative procedures, such as regenerative dentistry (RD). Instead of replacing the lost or damaged oral tissues with synthetic materials, RD uses stem cells combined with matrices and an appropriate microenvironment to achieve tissue regeneration. However, the currently available stem cell sources present limitations, thus restricting the potential of RD. Based on this problem, new sources of stem cells are fundamental. This work aims to characterize mouse gingival fibroblasts (GFs) after dedifferentiation with reversine. Different administration protocols were tested, and the cells obtained were evaluated regarding their cell metabolism, protein and DNA contents, cell cycle changes, morphology, cell death, genotoxicity, and acquisition of stem cell characteristics. Additionally, their teratoma potential was evaluated after in vivo transplantation. Reversine caused toxicity at higher concentrations, with decreased cell metabolic activity and protein content. The cells obtained displayed polyploidy, a cycle arrest in the G2/M phase, and showed an enlarged size. Additionally, apoptosis and genotoxicity were found at higher reversine concentrations. A subpopulation of the GFs possessed stem properties, as supported by the increased expression of CD90, CD105, and TERT, the existence of a CD106+ population, and their trilineage differentiation capacity. The dedifferentiated cells did not induce teratoma formation. The extensive characterization performed shows that significant functional, morphological, and genetic changes occur during the dedifferentiation process. The dedifferentiated cells have some stem-like characteristics, which are of interest for RD.
Collapse
Affiliation(s)
- Carlos Miguel Marto
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Paula
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Joana Jorge
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Caetano-Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa—Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Maria Inês Sousa
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bárbara Oliveiros
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Ramalho-Santos
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Marques-Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - António Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Eunice Carrilho
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
4
|
Park Y, Jung J, Jeong S, van Ee A, Garza LA, Jang M, Kim D, Park J. Reversine enhances skin barrier functions by suppressing the IL-4- and IL-13-mediated STAT6 pathway. J Dermatol Sci 2023; 111:71-73. [PMID: 37442736 PMCID: PMC10529134 DOI: 10.1016/j.jdermsci.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Affiliation(s)
- Yukyung Park
- Graduate School of Energy/Biotechnology, Dongseo University, Busan, Republic of Korea
| | - Janghwan Jung
- Department of Dermatology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Sunmun Jeong
- Department of Dermatology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Amy van Ee
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Minsoo Jang
- Department of Dermatology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Dongwon Kim
- Graduate School of Energy/Biotechnology, Dongseo University, Busan, Republic of Korea; Department of Bio-Chemical Engineering, College of Bio-Health Convergence, Dongseo University, Busan, Republic of Korea.
| | - Jongbin Park
- Department of Dermatology, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
5
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ, Lee YR. Piperlongumine Induces Cellular Apoptosis and Autophagy via the ROS/Akt Signaling Pathway in Human Follicular Thyroid Cancer Cells. Int J Mol Sci 2023; 24:ijms24098048. [PMID: 37175755 PMCID: PMC10179299 DOI: 10.3390/ijms24098048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Hsing Lin
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung City 433, Taiwan
| | - Chin-Ho Kuo
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Pin-Tzu Chen
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Zhang Y, Wang Y, Xue J, Liang W, Zhang Z, Yang X, Qiao Z, Jiang Y, Wang J, Cao X, Chen P. Co-treatment with miR-21-5p inhibitor and Aurora kinase inhibitor reversine suppresses breast cancer progression by targeting sprouty RTK signaling antagonist 2. Bioengineered 2021; 13:455-468. [PMID: 34967265 PMCID: PMC8805969 DOI: 10.1080/21655979.2021.2009410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have reported the regulatory effects of miR-21-5p and reversine in human breast cancer (HBC). However, the mechanism of reversine and miR-21-5p has not been fully investigated in HBC. The aim of the current study was to assess the mechanism of action of reversine, with or without miR-21-5p, in HBC progression. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot results confirmed the upregulation of miR-21-5p and downregulation of sprouty RTK signaling antagonist 2 (SPRY2) in HBC. Bioinformatics analysis and luciferase assay identified the correlation between miR-21-5p and SPRY2. Cell function experiment results indicated a decrease in migration, proliferation, and invasion of HBC cells treated with miR-21-5p inhibitor and reversine; however, an increase in apoptosis was observed in these cells. Apoptotic ability was more enhanced and migration, proliferation, and invasion were more impaired in HBC cells treated with both miR-21-5p inhibitor and reversine than in those treated individually with either inhibitors. SPRY2, downstream of miR-21-5p, participated in HBC progression with reversine. Overall, our study proved that combining the miR-21-5p inhibitor with reversine produced a synergistic effect by regulating SPRY2, thereby limiting HBC progression. This knowledge might offer insights into the clinical therapy of HBC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Lung Cancer Diagnosis and Treatment Center, Tianjin, China.,Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yaoyi Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Functional Imaging, Tianjin, China
| | - Jun Xue
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Wanping Liang
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhisheng Zhang
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiuming Yang
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhifei Qiao
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yang Jiang
- Department of Mammography Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Junping Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuchen Cao
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Lung Cancer Diagnosis and Treatment Center, Tianjin, China.,The First Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Chen
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Lung Cancer Diagnosis and Treatment Center, Tianjin, China
| |
Collapse
|
8
|
Hu W, Zheng X, Liu J, Zhang M, Liang Y, Song M. MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-β1/SMAD3 pathway. Bioengineered 2021; 12:11634-11647. [PMID: 34696660 PMCID: PMC8810009 DOI: 10.1080/21655979.2021.1995099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is the third-leading cause of cancer-related deaths worldwide. Dysregulation of glucosaminyl (N-acetyl) transferase 4 (GCNT4) gene and miR-130a-3p gene has been reported in the development of gastric cancer. We elucidated the function of the miR-130a-3p-GCNT4 axis in gastric cancer. Reverse transcription quantitative polymerase-chain reaction measured miR-130a-3p and GCNT4 levels in gastric cancer tissues and cells. The interaction between miR-130a-3p and GCNT4 was assessed using luciferase and RNA pull-down assays. Biological roles of miR-130a-3p and GCNT4 were determined using cell proliferation, migration, and invasion assays in gastric cancer cells. In addition, the effect of miR-130a-3p on the tumor growth in vivo was investigated using tumor xenografts assay. Levels of total TGF-β1, phosphorylated SMAD3 (p-SMAD3), and SMAD3 were measured by using western blot. The results showed that miR-130a-3p levels were increased, while GCNT4 levels were reduced in gastric cancer tissues and cell lines. While miR-130a-3p mimics facilitated cellular proliferation, migration, and invasion in vitro, promoted tumor growth in vivo, and activated the TGF-β1/SMAD3 signaling pathway, overexpression of GCNT4 prevented the growth of gastric cancer cells and restrained the activation of the TGF-β1/SMAD3 pathway. Mechanistically, miR-130a-3p suppressed gastric cancer genesis by inhibiting GCNT4 expression and activating the TGF-β1/SMAD3 signaling pathway. Altogether, we proposed that targeting of GCNT4 and activation of the TGF-β1/SMAD3 signaling pathway by miR-130a-3p enhanced the growth of gastric cancer cells. This study provides important strategies for the selection of therapeutic targets for gastric cancer treatment involving miR-130a-3p/GCNT4/TGF-β1/SMAD3 axis.
Collapse
Affiliation(s)
- Wei Hu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Xin Zheng
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Min Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yan Liang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Ming Song
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
9
|
Kung FP, Lim YP, Chao WY, Zhang YS, Yu HI, Tai TS, Lu CH, Chen SH, Li YZ, Zhao PW, Yen YP, Lee YR. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells. Cancers (Basel) 2021; 13:cancers13174266. [PMID: 34503074 PMCID: PMC8428232 DOI: 10.3390/cancers13174266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary There is no effective treatment currently available for patients with anaplastic, recurrent papillary, or follicular thyroid cancers. Reactive oxygen species (ROS) are believed to hold promise as a new therapeutic strategy for multiple human cancers. However, studies on ROS inducers for human thyroid cancer treatment are scarce. This study assesses the anticancer activity and the detailed downstream mechanisms of piperlongumine, a ROS inducer, in human thyroid cancer cells. We demonstrate that piperlongumine inhibits cell proliferation, regulates the cell cycle, and induces cellular apoptosis in various types of human thyroid cancer cells. The antihuman thyroid cancer activity of piperlongumine was through ROS induction, and it further suppressed the downstream Akt signaling pathway to elevate mitochondria-dependent apoptosis. A mouse xenograft study demonstrated that piperlongumine was safe and could inhibit tumorigenesis in vivo. The present study provides strong evidence that piperlongumine can be used as a therapeutic candidate for human thyroid cancers. Abstract Thyroid cancer (TC) is the most common endocrine malignancy, and its global incidence has steadily increased over the past 15 years. TC is broadly divided into well-differentiated, poorly differentiated, and undifferentiated types, depending on the histological and clinical parameters. Thus far, there are no effective treatments for undifferentiated thyroid cancers or advanced and recurrent cancer. Therefore, the development of an effective therapeutic is urgently needed for such patients. Piperlongumine (PL) is a naturally occurring small molecule derived from long pepper; it is selectively toxic to cancer cells by generating reactive oxygen species (ROS). In this study, we demonstrate the potential anticancer activity of PL in four TC cell lines. For this purpose, we cultured TC cell lines and analyzed the following parameters: Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction. PL modulated the cell cycle, induced apoptosis, and suppressed tumorigenesis in TC cell lines in a dose- and time-dependent manner through ROS induction. Meanwhile, an intrinsic caspase-dependent apoptosis pathway was observed in the TC cells under PL treatment. The activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL. PL-mediated apoptosis in TC cells was through the ROS-Akt pathway. Finally, the anticancer effect and safety of PL were also demonstrated in vivo. Our findings indicate that PL exhibits antitumor activity and has the potential for use as a chemotherapeutic agent against TC. This is the first study to show the sensitivity of TC cell lines to PL.
Collapse
Affiliation(s)
- Fang-Ping Kung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Tsai-Sung Tai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yu-Pei Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Hirakata C, Lima K, De Almeida BO, De Miranda LBL, Florêncio KGD, Furtado LC, Costa-Lotufo LV, Machado-Neto JA. Targeting glioma cells by antineoplastic activity of reversine. Oncol Lett 2021; 22:610. [PMID: 34188712 PMCID: PMC8227489 DOI: 10.3892/ol.2021.12871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are the most common type of primary central nervous system tumors and despite great advances in understanding the molecular basis of the disease very few new therapies have been developed. Reversine, a synthetic purine analog, is a multikinase inhibitor that targets aurora kinase A (AURKA) and aurora kinase B (AURKB). In gliomas, a high expression of AURKA or AURKB is associated with a malignant phenotype and a poor prognosis. The present study investigated reversine-related cellular and molecular antiglioma effects in HOG, T98G and U251MG cell lines. Gene and protein expression were assessed by reverse transcription-quantitative PCR and western blotting, respectively. For functional assays, human glioma cell lines (HOG, T98G and U251MG) were exposed to increasing concentrations of reversine (0.4–50 µM) and subjected to various cellular and molecular assays. Reversine reduced the viability and clonogenicity in a dose- and/or time-dependent manner in all glioma cells, with HOG (high AURKB-expression) and T98G (high AURKA-expression) cells being more sensitive compared with U251MG cells (low AURKA- and AURKB-expression). Notably, HOG cells presented higher levels of polyploidy, while T98G presented multiple mitotic spindles, which is consistent with the main regulatory functions of AURKB and AURKA, respectively. In molecular assays, reversine reduced AURKA and/or AURKB expression/activity and increased DNA damage and apoptosis markers, but autophagy-related proteins were not modulated. In conclusion, reversine potently induced mitotic catastrophe and apoptosis in glioma cells and higher basal levels of aurora kinases and genes responsive to DNA damage and may predict improved antiglioma responses to the drug. Reversine may be a potential novel drug in the antineoplastic arsenal against gliomas.
Collapse
Affiliation(s)
- Camila Hirakata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - Bruna Oliveira De Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - Lívia Bassani Lins De Miranda
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - Katharine Gurgel Dias Florêncio
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Luciana Costa Furtado
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-900, Brazil
| |
Collapse
|
11
|
Multiple functions of reversine on the biological characteristics of sheep fibroblasts. Sci Rep 2021; 11:12365. [PMID: 34117304 PMCID: PMC8196188 DOI: 10.1038/s41598-021-91468-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/26/2021] [Indexed: 11/08/2022] Open
Abstract
Previous reports have demonstrated that Reversine can reverse differentiation of lineage-committed cells to mesenchymal stem cells and suppress tumors growth. However, the molecular mechanisms of antitumor activity and promoting cellular dedifferentiation for reversine have not yet been clearly elucidated. In the present study, it was demonstrated that reversine of 5 μM could induce multinucleated cells through cytokinesis failure rather than just arrested in G2 or M phase. Moreover, reversine reversed the differentiation of sheep fibroblasts into MSC-like style, and notably increased the expression of pluripotent marker genes Oct4 and MSCs-related surface antigens. The fibroblasts treated with reversine could transdifferentiate into all three germ layers cells in vitro. Most importantly, the induced β-like cells and hepatocytes had similar metabolic functions with normal cells in vivo. In addition, reversine promoted fibroblasts autophagy, ROS accumulation, mitochondrial dysfunction and cell apoptosis via the mitochondria mediated intrinsic pathway. The results of high-throughput RNA sequencing showed that most differentially expressed genes (DEGs) involved in Mismatch repair, Nucleotide excision repair and Base excision repair were significantly up-regulated in reversine treated fibroblasts, which means that high concentration of reversine will cause DNA damage and activate the DNA repair mechanism. In summary, reversine can increase the plasticity of sheep fibroblasts and suppress cell growth via the mitochondria mediated intrinsic pathway.
Collapse
|
12
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
13
|
Berberine Derivatives Suppress Cellular Proliferation and Tumorigenesis In Vitro in Human Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2020; 21:ijms21124218. [PMID: 32545770 PMCID: PMC7352437 DOI: 10.3390/ijms21124218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of death in the world, and the most common type of lung cancer is non-small-cell lung cancer (NSCLC), accounting for 85% of lung cancer. Patients with NSCLC, when detected, are mostly in a metastatic stage, and over half of patients diagnosed with NSCLC die within one year after diagnosis; the 5-year survival rate is 24%. However, in patients with metastatic NSCLC, the 5-year survival rate is 6%. Therefore, development of a new therapeutic agent or strategy is urgent for NSCLCs. Berberine has been illustrated to be a therapeutic agent of NSCLC. In the present study, we synthesized six derivatives of berberine, and the anti-NSCLC activity of these agents was examined. Some of them exert increasing proliferation inhibition comparing with berberine. Further studies demonstrated that two of the most effective agents, 9-O-decylberberrubine bromide (B6) and 9-O-dodecylberberrubine bromide (B7), performed cell cycle regulation, in-vitro tumorigenesis inhibition and autophagic flux blocking, but not induction of cellular apoptosis in NSCLC cells. Moreover, B6 and B7 were determined to be green fluorescent and could be penetrated and localized in cellular mitochondria. Herein, B6 and B7, the berberine derivatives we synthesized, revealed better anti-NSCLC activity with berberine and may be used as therapeutic candidates for the treatment of NSCLCs.
Collapse
|
14
|
Zhu L, Wu Q, Quan B, Yang J, Yang J, Hou W, Cheng L. Autophagy inhibition by reversine and its suppressive effects on human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2020; 528:105-111. [PMID: 32456791 DOI: 10.1016/j.bbrc.2020.05.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Therapy for human hepatocellular carcinoma (HCC) remains a great challenge for physicians and patients worldwide. The anti-tumor effects of reversine have attracted much more concerns. MATERIALS AND METHODS This study evaluated the growth regulatory effects of reversine on HCC cells lines. Meanwhile, the underlying mechanism including autophagy modulation was also identified. RESULTS reversine markedly inhibited the proliferation of both HCC cells and induced cell apoptosis and multinuclear in a dose-dependent manner. In addition, the decreased ratio of LC3II/LC3I as well as elevated p62 expression were observed under reversine treatment, indicating the autophagy inhibition by reversine in HepG2 cell line. Moreover, modulation of autophagy with rapamycin and chloroquine significantly attenuated and enhanced the cytostatic effects of reversine, respectively. CONCLUSIONS reversine could reduce the cell viability of HCC cells via inducing cell apoptosis and polyploidy. In addition, cell autophagy was involved and might play a protective role in HCC cells, the joint use of autophagy inhibitor enhanced reversine-mediating antitumor effects. Our data offered novel ideas for comprehensive therapeutic regimes on human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lingling Zhu
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Qiongle Wu
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Bin Quan
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jianghua Yang
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jinsun Yang
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Weishun Hou
- Department of Infectious Disease, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Li Cheng
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| |
Collapse
|
15
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
16
|
Park YL, Ha SY, Park SY, Choi JH, Jung MW, Myung DS, Kim HS, Joo YE. Reversine induces cell cycle arrest and apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. Int J Oncol 2019; 54:1875-1883. [PMID: 30864676 DOI: 10.3892/ijo.2019.4746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
Reversine, a 2,6‑diamino‑substituted purine analogue, has been reported to be effective in tumor suppression via induction of cell growth arrest and apoptosis of cancer cells. However, it remains unclear whether reversine exerts anticancer effects on human colorectal cancer cells. In the present study, in vitro experiments were conducted to investigate the anticancer properties of reversine in human colorectal cancer cells. The effect of reversine on human colorectal cancer cell lines, SW480 and HCT‑116, was examined using a WST‑1 cell viability assay, fluorescence microscopy, flow cytometry, DNA fragmentation, small interfering RNA (siRNA) and western blotting. Reversine treatment demonstrated cytotoxic activity in human colorectal cancer cells. It also induced apoptosis by activating poly(ADP‑ribose) polymerase, caspase‑3, ‑7 and ‑8, and increasing the levels of the pro‑apoptotic protein second mitochondria‑derived activator of caspase/direct inhibitor of apoptosis‑binding protein with low pI. The pan‑caspase inhibitor Z‑VAD‑FMK attenuated these reversine‑induced apoptotic effects on human colorectal cancer cells. Additionally, reversine treatment induced cell cycle arrest in the subG1 and G2/M phases via increase in levels of p21, p27 and p57, and decrease in cyclin D1 levels. The expression of Fas and death receptor 5 (DR5) signaling proteins in SW480 and HCT116 cells was upregulated by reversine treatment. Reversine‑induced apoptosis and cell cycle arrest were suppressed by inhibition of Fas and DR5 expression via siRNA. In conclusion, Reversine treatment suppressed tumor progression by the inhibition of cell proliferation, induction of cell cycle arrest and induction of apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. The present study indicated that reversine may be used as a novel anticancer agent in human colorectal cancer.
Collapse
Affiliation(s)
- Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Sang-Yoon Ha
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Jung-Ho Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Min-Woo Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hyun-Soo Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| |
Collapse
|
17
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Synthesis of 2,6-Diamino-Substituted Purine Derivatives and Evaluation of Cell Cycle Arrest in Breast and Colorectal Cancer Cells. Molecules 2018; 23:molecules23081996. [PMID: 30103421 PMCID: PMC6222518 DOI: 10.3390/molecules23081996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Reversine is a potent antitumor 2,6-diamino-substituted purine acting as an Aurora kinases inhibitor and interfering with cancer cell cycle progression. In this study we describe three reversine-related molecules, designed by docking calculation, that present structural modifications in the diamino units at positions 2 and 6. We investigated the conformations of the most stable prototropic tautomers of one of these molecules, the N6-cyclohexyl-N6-methyl-N2-phenyl-7H-purine-2,6-diamine (3), by Density Functional Theory (DFT) calculation in the gas phase, water and chloroform, the last solvent considered to give insights into the detection of broad signals in NMR analysis. In all cases the HN(9) tautomer resulted more stable than the HN(7) form, but the most stable conformations changed in different solvents. Molecules 1–3 were evaluated on MCF-7 breast and HCT116 colorectal cancer cell lines showing that, while being less cytotoxic than reversine, they still caused cell cycle arrest in G2/M phase and polyploidy. Unlike reversine, which produced a pronounced cell cycle arrest in G2/M phase in all the cell lines used, similar concentrations of 1–3 were effective only in cells where p53 was deleted or down-regulated. Therefore, our findings support a potential selective role of these structurally simplified, reversine-related molecules in p53-defective cancer cells.
Collapse
|
19
|
Jemaà M, Abassi Y, Kifagi C, Fezai M, Daams R, Lang F, Massoumi R. Reversine inhibits Colon Carcinoma Cell Migration by Targeting JNK1. Sci Rep 2018; 8:11821. [PMID: 30087398 PMCID: PMC6081478 DOI: 10.1038/s41598-018-30251-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed cancers and the third most common cause of cancer-related death. Metastasis is the leading reason for the resultant mortality of these patients. Accordingly, development and characterization of novel anti-cancer drugs limiting colorectal tumor cell dissemination and metastasis are needed. In this study, we found that the small molecule Reversine reduces the migration potential of human colon carcinoma cells in vitro. A coupled kinase assay with bio-informatics approach identified the c-Jun N-terminal kinase (JNK) cascade as the main pathway inhibited by Reversine. Knockdown experiments and pharmacological inhibition identified JNK1 but not JNK2, as a downstream effector target in cancer cell migration. Xenograft experiments confirm the effect of JNK inhibition in the metastatic potential of colon cancer cells. These results highlight the impact of individual JNK isoforms in cancer cell metastasis and propose Reversine as a novel anti-cancer molecule for treatment of colon cancer patients.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, 22381, Sweden. .,Department of Physiology I, Tübingen University, Gmelinstr. 5, D-72076, Tübingen, Germany.
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, 22381, Sweden
| | - Chamseddine Kifagi
- Division of Immunology and Vaccinology, Technical University of Denmark, Copenhagen, Denmark
| | - Myriam Fezai
- Department of Physiology I, Tübingen University, Gmelinstr. 5, D-72076, Tübingen, Germany
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, 22381, Sweden
| | - Florian Lang
- Department of Physiology I, Tübingen University, Gmelinstr. 5, D-72076, Tübingen, Germany. .,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, 22381, Sweden.
| |
Collapse
|
20
|
Reversine induces autophagic cell death through the AMP-activated protein kinase pathway in urothelial carcinoma cells. Anticancer Drugs 2018; 29:29-39. [PMID: 28984683 DOI: 10.1097/cad.0000000000000563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Urothelial carcinoma is one of the most common malignancies of the urinary tract. Effective treatment of advanced urothelial carcinoma remains a clinical challenge with poor outcomes in these patients. Previous reports have shown that the expression of aurora kinase is associated with clinical stage and prognosis; hence, aurora kinases are potential targets in urothelial carcinoma therapy. Reversine, an aurora kinase inhibitor, was analyzed for its cytotoxicity in this study. Cell proliferation, flow cytometry, western blotting, and immunofluorescent assay were used to determine the effect of reversine on urothelial carcinoma cells. The results showed that reversine significantly inhibits the growth of urothelial carcinoma cell lines. Reversine induced cell cycle arrest at the G2/M phase, leading to autophagic cell death by activating the AMP-activated protein kinase pathway. Reversine induced significant cell death in urothelial carcinoma cells. Our results suggest that reversine may be a suitably small molecule for treating urothelial carcinoma in the future.
Collapse
|
21
|
Cheng L, Wang H, Guo K, Wang Z, Zhang Z, Shen C, Chen L, Lin J. Reversine, a substituted purine, exerts an inhibitive effect on human renal carcinoma cells via induction of cell apoptosis and polyploidy. Onco Targets Ther 2018. [PMID: 29520153 PMCID: PMC5833753 DOI: 10.2147/ott.s158198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Human renal cell carcinoma (RCC) is the most common type of kidney cancer that arises from the renal epithelium. Up to 33.3% of RCC patients treated with local tumor resections will subsequently develop recurrence or metastases. Thus, optimized therapeutic regimes are urgently needed to improve the prognosis of RCC. Reversine was recently reported to exert critical roles in cancer therapy. Materials and methods This study evaluated the anti-tumor effects of reversine on cell viability, colony formation, apoptosis, and cell cycle in 786-O and ACHN cell lines. Results It was demonstrated that reversine significantly inhibited the proliferation of both cell lines in time- and dose-dependent manners. Polyploidy formation was observed under high-concentration reversine treatment. In addition, reversine induced cell death via caspase-dependent apoptotic pathways, which could be partially inhibited by Z-VAD-FMK, a pan-caspase inhibitor. Conclusion Reversine could effectively suppress the proliferation of human RCC cells, and may serve as a novel therapeutic regimen for RCC in clinical practice.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Kecun Guo
- Department of Urology, The Second People's Hospital of Liaocheng, Shandong, China
| | - Zicheng Wang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| |
Collapse
|
22
|
Lee YR, Chen SH, Lin CY, Chao WY, Lim YP, Yu HI, Lu CH. In Vitro Antitumor Activity of Aloperine on Human Thyroid Cancer Cells through Caspase-Dependent Apoptosis. Int J Mol Sci 2018; 19:ijms19010312. [PMID: 29361731 PMCID: PMC5796256 DOI: 10.3390/ijms19010312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
The global incidence of thyroid cancer, one of the most common endocrine malignancies, is especially high among women. Although most patients with thyroid cancers exhibit a good prognosis with standard treatment, there are no effective therapies for patients with anaplastic thyroid cancers or cancers that have reached an advanced or recurrent level. Therefore, it is important to develop highly effective compounds for treating such patients. Aloperine, a natural compound isolated from Sophora alopecuroides, has been reported to possess antioxidant, anti-inflammatory, anti-neuronal injury, anti-renal injury, antitumor, anti-allergic, and antiviral properties. In this study, we show that aloperine can inhibit cell growth in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers. Moreover, it could suppress in vitro tumorigenesis and promote cellular apoptosis. Further analysis demonstrated the involvement of caspase-dependent apoptosis, including intrinsic and/or extrinsic pathways, in aloperine-induced cellular apoptosis. However, cell cycle regulation was not detected with aloperine treatment. This study suggests the potential therapeutic use of aloperine in human anaplastic thyroid cancers and multidrug-resistant papillary thyroid cancers.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan.
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
| | - Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan.
- Department of Biotechnology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|
23
|
Ha TK, Jung I, Kim ME, Bae SK, Lee JS. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed Pharmacother 2017; 91:378-384. [PMID: 28463801 DOI: 10.1016/j.biopha.2017.04.100] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 11/29/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers.
Collapse
Affiliation(s)
- Tae Kwun Ha
- Department of Surgery, Inje University College of Medicine, Busan Paik Hospital, Busan, Korea
| | - Inae Jung
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea
| | - Mi Eun Kim
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea
| | - Sung Kwon Bae
- Department of Medical Management, Kosin University, Busan, Korea
| | - Jun Sik Lee
- Department of Life Sciences, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea.
| |
Collapse
|
24
|
Lu CH, Chen SH, Chang YS, Liu YW, Wu JY, Lim YP, Yu HI, Lee YR. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells. Pharmacol Res 2016; 115:288-298. [PMID: 27940017 DOI: 10.1016/j.phrs.2016.11.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/18/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan; College of Nursing and Health Sciences, Dayeh University, Changhua, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yi-Sheng Chang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Emergency, Toxicology Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| |
Collapse
|
25
|
Lievens S, Van der Heyden J, Masschaele D, De Ceuninck L, Petta I, Gupta S, De Puysseleyr V, Vauthier V, Lemmens I, De Clercq DJH, Defever D, Vanderroost N, De Smet AS, Eyckerman S, Van Calenbergh S, Martens L, De Bosscher K, Libert C, Hill DE, Vidal M, Tavernier J. Proteome-scale Binary Interactomics in Human Cells. Mol Cell Proteomics 2016; 15:3624-3639. [PMID: 27803151 DOI: 10.1074/mcp.m116.061994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Indexed: 12/11/2022] Open
Abstract
Because proteins are the main mediators of most cellular processes they are also prime therapeutic targets. Identifying physical links among proteins and between drugs and their protein targets is essential in order to understand the mechanisms through which both proteins themselves and the molecules they are targeted with act. Thus, there is a strong need for sensitive methods that enable mapping out these biomolecular interactions. Here we present a robust and sensitive approach to screen proteome-scale collections of proteins for binding to proteins or small molecules using the well validated MAPPIT (Mammalian Protein-Protein Interaction Trap) and MASPIT (Mammalian Small Molecule-Protein Interaction Trap) assays. Using high-density reverse transfected cell microarrays, a close to proteome-wide collection of human ORF clones can be screened for interactors at high throughput. The versatility of the platform is demonstrated through several examples. With MAPPIT, we screened a 15k ORF library for binding partners of RNF41, an E3 ubiquitin protein ligase implicated in receptor sorting, identifying known and novel interacting proteins. The potential related to the fact that MAPPIT operates in living human cells is illustrated in a screen where the protein collection is scanned for interactions with the glucocorticoid receptor (GR) in its unliganded versus dexamethasone-induced activated state. Several proteins were identified the interaction of which is modulated upon ligand binding to the GR, including a number of previously reported GR interactors. Finally, the screening technology also enables detecting small molecule target proteins, which in many drug discovery programs represents an important hurdle. We show the efficiency of MASPIT-based target profiling through screening with tamoxifen, a first-line breast cancer drug, and reversine, an investigational drug with interesting dedifferentiation and antitumor activity. In both cases, cell microarray screens yielded known and new potential drug targets highlighting the utility of the technology beyond fundamental biology.
Collapse
Affiliation(s)
- Sam Lievens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - José Van der Heyden
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Delphine Masschaele
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Leentje De Ceuninck
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ioanna Petta
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium.,‖Inflammation Research Center, VIB, Ghent, Belgium.,**Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Surya Gupta
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Veronic De Puysseleyr
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Virginie Vauthier
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Dieter Defever
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Nele Vanderroost
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Anne-Sophie De Smet
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Lennart Martens
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium.,§Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- ‖Inflammation Research Center, VIB, Ghent, Belgium.,**Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - David E Hill
- ‡‡Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,§§Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Marc Vidal
- ‡‡Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,§§Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jan Tavernier
- From the ‡Medical Biotechnology Center, VIB, Ghent, Belgium; .,§Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Huang Y, Huang D, Weng J, Zhang S, Zhang Q, Mai Z, Gu W. Effect of reversine on cell cycle, apoptosis, and activation of hepatic stellate cells. Mol Cell Biochem 2016; 423:9-20. [DOI: 10.1007/s11010-016-2815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
|
27
|
Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0158587. [PMID: 27385117 PMCID: PMC4934785 DOI: 10.1371/journal.pone.0158587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation.
Collapse
|
28
|
Kim WH, Shen H, Jung DW, Williams DR. Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 2016; 32:157-68. [DOI: 10.1007/s10565-016-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|
29
|
Li X, Guo Y, Yao Y, Hua J, Ma Y, Liu C, Guan W. Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4. Int J Biol Sci 2016; 12:53-62. [PMID: 26722217 PMCID: PMC4679398 DOI: 10.7150/ijbs.12199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022] Open
Abstract
Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4.
Collapse
Affiliation(s)
- Xiangchen Li
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Guo
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Yaxin Yao
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinlian Hua
- 3. Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A & F University, Yangling, 712100, China
| | - Yuehui Ma
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changqing Liu
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ; 2. Department of Bioscience, Department of laboratory medicine, Bengbu Medical College, Bengbu 233000, China
| | - Weijun Guan
- 1. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
30
|
Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015; 22:R205-18. [PMID: 25947570 DOI: 10.1530/erc-15-0042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Autophagy is an important intracellular process involving the degradation of cytoplasmic components. It is involved in both physiological and pathological conditions, including cancer. The role of autophagy in cancer is described as a 'double-edged sword,' a term that reflects its known participation in tumor suppression, tumor survival and tumor cell proliferation. Available research regarding autophagy in endocrine cancer supports this concept. Autophagy shows promise as a novel therapeutic target in different types of endocrine cancer, inhibiting or increasing treatment efficacy in a context- and cell-type-dependent manner. At present, however, there is very little research concerning autophagy in endocrine tumors. No research was reported connecting autophagy to some of the tumors of the endocrine glands such as the pancreas and ovary. This review aims to elucidate the roles of autophagy in different types of endocrine cancer and highlight the need for increased research in the field.
Collapse
Affiliation(s)
- Andrea Weckman
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Antonio Di Ieva
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Luis V Syro
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Henriett Butz
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Michael D Cusimano
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| | - Kalman Kovacs
- Division of NeurosurgeryDepartment of SurgeryDivision of PathologyDepartment of Laboratory Medicine, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, M5B 1W8 CanadaDepartment of NeurosurgeryHospital Pablo Tobon Uribe and Clínica Medellin, Medellin, Colombia
| |
Collapse
|
31
|
Netea-Maier RT, Klück V, Plantinga TS, Smit JWA. Autophagy in thyroid cancer: present knowledge and future perspectives. Front Endocrinol (Lausanne) 2015; 6:22. [PMID: 25741318 PMCID: PMC4332359 DOI: 10.3389/fendo.2015.00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Despite having a good prognosis in the majority of cases, when the tumor is dedifferentiated it does no longer respond to conventional treatment with radioactive iodine, the prognosis worsens significantly. Treatment options for advanced, dedifferentiated disease are limited and do not cure the disease. Autophagy, a process of self-digestion in which damaged molecules or organelles are degraded and recycled, has emerged as an important player in the pathogenesis of different diseases, including cancer. The role of autophagy in thyroid cancer pathogenesis is not yet elucidated. However, the available data indicate that autophagy is involved in several steps of thyroid tumor initiation and progression as well as in therapy resistance and therefore could be exploited for therapeutic applications. The present review summarizes the most recent data on the role of autophagy in the pathogenesis of thyroid cancer and we will provide a perspective on how this process can be targeted for potential therapeutic approaches and could be further explored in the context of multimodality treatment in cancer and personalized medicine.
Collapse
Affiliation(s)
- Romana T. Netea-Maier
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Viola Klück
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Theo S. Plantinga
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Johannes W. A. Smit
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- *Correspondence: Johannes W. A. Smit, Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Geert Grooteplein 8, PO Box 9101, Nijmegen 6500 HB, Netherlands e-mail:
| |
Collapse
|
32
|
Resolving cancer-stroma interfacial signalling and interventions with micropatterned tumour-stromal assays. Nat Commun 2014; 5:5662. [PMID: 25489927 PMCID: PMC4261930 DOI: 10.1038/ncomms6662] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 01/09/2023] Open
Abstract
Tumor-stromal interactions are a determining factor in cancer progression. In vivo, the interaction interface is associated with spatially-resolved distributions of cancer and stromal phenotypes. Here, we establish a micropatterned tumor-stromal assay (μTSA) with laser capture microdissection to control the location of co-cultured cells and analyze bulk and interfacial tumor-stromal signaling in driving cancer progression. μTSA reveals a spatial distribution of phenotypes in concordance with human estrogen receptor-positive (ER+) breast cancer samples, and heterogeneous drug activity relative to the tumor-stroma interface. Specifically, an unknown mechanism of reversine is shown in targeting tumor-stromal interfacial interactions using ER+ MCF-7 breast cancer and bone marrow-derived stromal cells. Reversine suppresses MCF-7 tumor growth and bone metastasis in vivo by reducing tumor stromalization including collagen deposition and recruitment of activated stromal cells. This study advocates μTSA as a platform for studying tumor microenvironmental interactions and cancer field effects with applications in drug discovery and development.
Collapse
|
33
|
Autophagy, a novel target for chemotherapeutic intervention of thyroid cancer. Cancer Chemother Pharmacol 2013; 73:439-49. [DOI: 10.1007/s00280-013-2363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/16/2013] [Indexed: 01/07/2023]
|
34
|
Bijian K, Lougheed C, Su J, Xu B, Yu H, Wu JH, Riccio K, Alaoui-Jamali MA. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br J Cancer 2013; 109:2810-8. [PMID: 24169345 PMCID: PMC3844920 DOI: 10.1038/bjc.2013.675] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Background: The dynamics of focal adhesion (FA) turnover is a key determinant for the regulation of cancer cell migration. Here we investigated FA turnover in a panel of breast cancer models with distinct invasive properties and evaluated the impact of reversine on this turnover in relation to cancer cell invasion in in vitro and in vivo conditions. Methods: Live imaging and immunofluorescence assays were used to investigate FA turnover in breast cancer cells. Biochemical studies were used to investigate the impact of reversine on FA signalling and turnover. In vivo activity was investigated using orthotopic breast cancer mouse models. Results: Accelerated FA disassembly from plasma membrane protrusions was observed in invasive compared with non-invasive breast cancer cells or non-immortalised mammary epithelial cells. Reversine significantly inhibited FA disassembly leading to stable FAs, which was associated with reduced cell motility and invasion. The inhibitory effect of reversine on FA turnover accounted for a large part on its capacity to interfere with FAK function on regulating its downstream targets. In orthotopic breast cancer mouse models, reversine revealed a potent inhibitory activity on tumour progression to metastasis. Conclusion: These results support the utility of targeting FA turnover as a therapeutic approach for invasive breast cancer.
Collapse
Affiliation(s)
- K Bijian
- Departments of Medicine and Oncology, Segal Cancer Centre and Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Synergistic antitumor activity of reversine combined with aspirin in cervical carcinoma in vitro and in vivo. Cytotechnology 2013; 65:643-53. [PMID: 23475158 DOI: 10.1007/s10616-012-9520-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/18/2012] [Indexed: 02/07/2023] Open
Abstract
A recent report showed that reversine treatment could induce murine myoblasts dedifferentiation into multipotent progenitor cells and inhibit proliferation of some tumors, and other reports showed that apoptosis of lung adenocarcinoma cells could be induced by aspirin. The aim of the present study was to evaluate the synergistic antitumor effects of reversine and aspirin on cervical cancer. The inhibition rate of reversine and aspirin on cervical cancer cell lines' (HeLa and U14) was determined by MTT method, cell cycle of HeLa and U14 cells was analyzed by FACS, mitochondrial membrane potential of HeLa and U14 was detected using a JC-1 kit. HeLa and U14 colony formation was analyzed by soft agar colony formation assay. The expression of caspase-3, Bcl-2/Bax, cyclin D1 and p21 was detected by qRT-PCR and Western Blotting. Moreover, tumor weight and tumor volume was assessed using a murine model of cervical cancer with U14 cells subcutaneously (s.c.) administered into the neck, separately or combined with drug administration via the intraperitoneal (i.p.) route. The inhibition rate of cells in the combination group (10 μmol/L reversine, 10 mmol/L aspirin) increased significantly in comparison to that when the drugs were used alone (P < 0.05); moreover, this combination could synergistically inhibit the proliferation of five cervical cancer cell lines (HeLa, U14, Siha, Caski and C33A). In the therapeutic mouse model, tumor weight and tumor volume of cervical cancer bearing mice was more reduced when compared with the control agents (P < 0.05) in tumor-bearing mice. The combination of reversine and aspirin exerts synergistic growth inhibition and apoptosis induction on cervical cancers cells.
Collapse
|
36
|
Lu CH, Liu YW, Hua SC, Yu HI, Chang YP, Lee YR. Autophagy induction of reversine on human follicular thyroid cancer cells. Biomed Pharmacother 2012; 66:642-7. [PMID: 23089471 DOI: 10.1016/j.biopha.2012.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023] Open
Abstract
The incurable differentiated thyroid cancer (DTC), poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are the most aggressive in all of the thyroid cancers. Unfortunately, there are almost no effective therapies. A novel and effective treatment is urgently needed to develop. Recently, reversine, a small synthetic purine analogue, has been reported to be effective in human thyroid cancer suppression through cell cycle arrest and apoptosis induction. In this study, we performed an in vitro evaluation of reversine on autophagy activation, one of the programmed cell death, and the related mechanisms in human follicular thyroid cancer cell line WRO. Incubation of WRO cells with reversine induced autophagosome formation in a short time treatment. LC3-II overexpression in a dosage-dependent manner with reversine treatment was demonstrated in the autophagy activation. Moreover, reversine suppressed Akt/mTOR related signaling pathway activation, a major pathway for autophagy activation, was also revealed in WRO cells. Our data demonstrated that reversine is effective to induce autophagy. Moreover, the LC3-II overexpression and the p62 protein were degraded in a time-dependent manner, indicating that the autophagic flux has happened in the reversine treated WRO cells. In addition, the activation of Akt/mTOR/p70S6K related pathways were shown to be reduced, suggesting these pathways may involve in the reversine mediated autophagy induction. Reversine is therefore worthy of further investigation in clinical therapeutics.
Collapse
Affiliation(s)
- Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer 2012; 21:358-69. [PMID: 22926505 DOI: 10.1007/s12282-012-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study. RESULTS Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment. CONCLUSIONS In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.
Collapse
|
38
|
Piccoli M, Palazzolo G, Conforti E, Lamorte G, Papini N, Creo P, Fania C, Scaringi R, Bergante S, Tringali C, Roncoroni L, Mazzoleni S, Doneda L, Galli R, Venerando B, Tettamanti G, Gelfi C, Anastasia L. The synthetic purine reversine selectively induces cell death of cancer cells. J Cell Biochem 2012; 113:3207-17. [DOI: 10.1002/jcb.24197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Jemaà M, Galluzzi L, Kepp O, Boilève A, Lissa D, Senovilla L, Harper F, Pierron G, Berardinelli F, Antoccia A, Castedo M, Vitale I, Kroemer G. Preferential killing of p53-deficient cancer cells by reversine. Cell Cycle 2012; 11:2149-58. [PMID: 22592527 DOI: 10.4161/cc.20621] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reversine is a small synthetic molecule that inhibits multiple mitotic kinases, including MPS1 as well as Aurora kinase A and B (AURKA and AURKB). Here, we investigated the effects of reversine on p53-deficient vs p53-proficient cancer cells. We found that low doses (~0.5 µM) of reversine, which selectively inhibit MPS1 and hence impair the spindle assembly checkpoint, kill human TP53 (-/-) colon carcinoma cells less efficiently than their wild-type counterparts. In sharp contrast, high doses (~5 µM) of reversine induced hyperploidization and apoptosis to a much larger extent in TP53 (-/-) than in TP53 (+/+) cells. Such a selective cytotoxicity could not be reproduced by the knockdown of MPS1, AURKA and AURKB, neither alone nor in combination, suggesting that it involves multiple (rather than a few) molecular targets of reversine. Videomicroscopy-based cell fate profiling revealed that, in response to high-dose reversine, TP53 (-/-) (but not TP53 (+/+) ) cells undergo several consecutive rounds of abortive mitosis, resulting in the generation of hyperpolyploid cells that are prone to succumb to apoptosis upon the activation of mitotic catastrophe. In line with this notion, the depletion of anti-apoptotic proteins of the BCL-2 family sensitized TP53 (-/-) cells to the toxic effects of high-dose reversine. Moreover, the knockdown of BAX or APAF-1, as well as the chemical inhibition of caspases, limited the death of TP53 (-/-) cells in response to high-dose reversine. Altogether, these results suggest that p53-deficient cells are particularly sensitive to the simultaneous inhibition of multiple kinases, including MPS1, as it occurs in response to high-dose reversine.
Collapse
|