1
|
Zhou Y, Yang M, Yan X, Zhang L, Lu N, Ma Y, Zhang Y, Cui M, Zhang M, Zhang M. Oral Nanotherapeutics of Andrographolide/Carbon Monoxide Donor for Synergistically Anti-inflammatory and Pro-resolving Treatment of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:36061-36075. [PMID: 37463480 DOI: 10.1021/acsami.3c09342] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology affecting the colon and rectum. Current therapeutics are focused on suppressing inflammation but are ineffective. Combining anti-inflammatory therapeutic approaches with pro-resolution might be a superior strategy for UC treatment. Andrographolide (AG), an active compound from the plant Andrographis paniculata, presented anti-inflammatory effects in various inflammatory diseases. Gaseous mediators, such as carbon monoxide (CO), have a role in inflammatory resolution. Herein, we developed a dextran-functionalized PLGA nanocarrier for efficient delivery of AG and a carbon monoxide donor (CORM-2) for synergistically anti-inflammatory/pro-resolving treatment of UC (AG/CORM-2@NP-Dex) based on PLGA with good biocompatibility, slow drug release, efficient targeting, and biodegradability. The resulting nanocarrier had a nano-scaled diameter of ∼200 nm and a spherical shape. After being coated with dextran (Dex), the resulting AG/CORM-2@NP-Dex could be efficiently internalized by Colon-26 and Raw 264.7 cells in vitro and preferentially localized to the inflamed colon with chitosan/alginate hydrogel protection by gavage. AG/CORM-2@NP-Dex performed anti-inflammatory effects by eliminating the over-production of pro-inflammatory mediator, nitric oxide (NO), and down-regulating the expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), while it showed pro-resolving function by accelerating M1 to M2 macrophage conversion and up-regulating resolution-related genes (IL-10, TGF-β, and HO-1). In the colitis model, oral administration of AG/CORM-2@NP-Dex in a chitosan/alginate hydrogel also showed synergistically anti-inflammatory/pro-resolving effects, therefore relieving UC effectively. Without appreciable systemic toxicity, this bifunctional nanocarrier represents a novel therapeutic approach for UC and is expected to achieve long-term inflammatory remission.
Collapse
Affiliation(s)
- Ying Zhou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an 710032, China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lingmin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
2
|
Świerczek A, Jusko WJ. Pharmacokinetic/Pharmacodynamic Modeling of Dexamethasone Anti-Inflammatory and Immunomodulatory Effects in LPS-Challenged Rats: A Model for Cytokine Release Syndrome. J Pharmacol Exp Ther 2023; 384:455-472. [PMID: 36631280 PMCID: PMC9976795 DOI: 10.1124/jpet.122.001477] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Dexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway. The possible mechanism of action of DEX in the treatment of COVID-19 is related to its anti-inflammatory activity arising from inhibition of cytokine production but may be also attributed to its influence on immune cell trafficking and turnover. This study, by means of pharmacokinetic/pharmacodynamic modeling, aimed at the comprehensive quantitative assessment of DEX effects in lipopolysaccharide-challenged rats and to describe interrelations among relevant signaling molecules in this animal model of cytokine release syndrome induced by activation of TLR4 pathway. DEX was administered in a range of doses from 0.005 to 2.25 mg·kg-1 in LPS-challenged rats. Serum DEX, corticosterone (CST), tumor necrosis factor α, interleukin-6, and nitric oxide as well as lymphocyte and granulocyte counts in peripheral blood were quantified at different time points. A minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model was proposed characterizing the time courses of plasma DEX and the investigated biomarkers. A high but not complete inhibition of production of inflammatory mediators and CST was produced in vivo by DEX. The mPBPK/PD model, upon translation to humans, may help to optimize DEX therapy in patients with diseases associated with excessive production of inflammatory mediators, such as COVID-19. SIGNIFICANCE STATEMENT: A mPBPK/PD model was developed to describe concentration-time profiles of plasma DEX, mediators of inflammation, and immune cell trafficking and turnover in LPS-challenged rats. Interrelations among DEX and relevant biomarkers were reflected in the mechanistic model structure. The mPBPK/PD model enabled quantitative assessment of in vivo potency of DEX and, upon translation to humans, may help optimize dosing regimens of DEX for the treatment of immune-related conditions associated with exaggerated immune response.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
3
|
Hu Y, Wang L, Xiang L, Wu J, Huang W, Xu C, Meng X, Wang P. Pharmacokinetic-Pharmacodynamic Modeling for Coptisine Challenge of Inflammation in LPS-Stimulated Rats. Sci Rep 2019; 9:1450. [PMID: 30723253 PMCID: PMC6363730 DOI: 10.1038/s41598-018-38164-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Pro-inflammatory factors are important indicators for assessing inflammation severity and drug efficacy. Coptisine has been reported to inhibit LPS-induced TNF-α and NO production. In this study, we aim to build a pharmacokinetic-pharmacodynamic model to quantify the coptisine time course and potency of its anti-inflammatory effect in LPS-stimulated rats. The plasma and lung coptisine concentrations, plasma and lung TNF-α concentrations, plasma NO concentration, and lung iNOS expression were measured in LPS-stimulated rats after intravenous injection of three coptisine doses. The coptisine disposition kinetics were described by a two-compartment model. The coptisine distribution process from the plasma to the lung was described by first-order dynamics. The dynamics of plasma TNF-α generation and elimination followed zero-order kinetics and the Michaelis-Menten equation. A first-order kinetic model described the TNF-α diffusion process from the plasma to the lung. A precursor-pool indirect response model was used to describe the iNOS and NO generation induced by TNF-α. The inhibition rates of TNF-α production by coptisine (54.73%, 26.49%, and 13.25%) calculated from the simulation model were close to the decline rates of the plasma TNF-α AUC (57.27%, 40.33%, and 24.98%, respectively). Coptisine suppressed plasma TNF-α generation in a linear manner, resulting in a cascading reduction of iNOS and NO. The early term TNF-α response to stimulation is a key factor in the subsequent inflammatory cascade. In conclusion, this comprehensive PK-PD model provided a rational explanation for the interlocking relationship among TNF-α, iNOS and NO production triggered by LPS and a quantitative evaluation method for inhibition of TNF-α production by coptisine.
Collapse
Affiliation(s)
- Yingfan Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Li Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Li Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jiasi Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Wen'ge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chensi Xu
- Chengdu Pharmoko Tech Corp., Ltd., Chengdu, 610041, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
4
|
Boyanapalli SSS, Huang Y, Su Z, Cheng D, Zhang C, Guo Y, Rao R, Androulakis IP, Kong AN. Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression. Biopharm Drug Dispos 2018; 39:289-297. [PMID: 29870054 DOI: 10.1002/bdd.2136] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/07/2022]
Abstract
Chronic inflammation is a key driver of cancer development. Nitrite levels, which are regulated by inducible nitric oxide synthase (iNOS), play a critical role in inflammation. While the anti-oxidant and anti-inflammatory effects of curcumin, a natural product present in the roots of Curcuma longa have been studied widely, the acute pharmacokinetics (PK) and pharmacodynamics (PD) of curcumin in suppressing pro-inflammatory markers and epigenetic modulators remain unclear. This study evaluated the PK and PD of curcumin-induced suppression of lipopolysaccharide (LPS)-mediated inflammation in rat lymphocytes. LPS was administered intravenously either alone or with curcumin to female Sprague-Dawley rats. Plasma samples were analysed for curcumin concentration and mRNA expression was quantified in lymphocytes. The relative gene expression of several inflammatory and epigenetic modulators was analysed. To investigate the relationship between curcumin concentration and iNOS, TNF-α, and IL-6 gene expression, PK/PD modeling using Jusko's indirect response model (IDR) integrating transit compartments (TC) describing the delayed response was conducted. The concentration-time profile of curcumin exhibited a bi-exponential decline, which was well described by a two-compartmental pharmacokinetic model. Importantly the results demonstrate that LPS induced gene expression of pro-inflammatory markers in lymphocytes, with peak expression at approximately 3 h and curcumin suppressed the gene expression in animals administered with LPS. These effects were well captured using the IDR model and an IDR model with the transit compartments. In summary, the PK/PD modeling approach could potentially provide a robust quantitative framework for evaluating the acute anti-inflammatory and epigenetic effects of curcumin in future clinical trials.
Collapse
Affiliation(s)
- Sarandeep S S Boyanapalli
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ying Huang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Zhengyuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Rohit Rao
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | |
Collapse
|
5
|
Xiang L, Hu YF, Wu JS, Wang L, Huang WG, Xu CS, Meng XL, Wang P. Semi-Mechanism-Based Pharmacodynamic Model for the Anti-Inflammatory Effect of Baicalein in LPS-Stimulated RAW264.7 Macrophages. Front Pharmacol 2018; 9:793. [PMID: 30072902 PMCID: PMC6058255 DOI: 10.3389/fphar.2018.00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Monitoring of the inhibition of TNF-α, IL-6, iNOS, and NO is used to effectively evaluate anti-inflammatory drugs. Baicalein was found to have good anti-inflammatory activities, but its detailed cellular pharmacodynamic events have not been expatiated by any other study. The inflammatory mediators, including TNF-α, IL-6, iNOS, and NO production in RAW264.7 macrophage induced by LPS, were measured. It was found that these data showed a sequential pattern on time and based on these points a cellular pharmacodynamic model was developed and tested. TNF-α and IL-6 were quantified by ELISA, NO was detected by Griess and iNOS expression was measured by Western blot. The pharmacodynamic model was developed using a NLME modeling program Monolix® 2016R1.1The results showed that baicalein quickly suppressed release of TNF-α in a concentration-dependent manner, and consequently causing the diminution of IL-6 and iNOS/NO. The pharmacodynamic model simulation successfully described the experimental data, supporting the hypothesis that IL-6 and iNOS /NO release after LPS stimulation is mediated by TNF-α rather than LPS directly. The pharmacodynamic model allowed a well understanding of the cellular pharmacodynamic mechanism of baicalein in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Li Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Fan Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Si Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen-Si Xu
- Chengdu Pharmoko Tech LTD corp., Chengdu, China
| | - Xian-Li Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhang C, Wang C, Li W, Wu R, Guo Y, Cheng D, Yang Y, Androulakis IP, Kong AN. Pharmacokinetics and Pharmacodynamics of the Triterpenoid Ursolic Acid in Regulating the Antioxidant, Anti-inflammatory, and Epigenetic Gene Responses in Rat Leukocytes. Mol Pharm 2017; 14:3709-3717. [PMID: 29035547 PMCID: PMC5697757 DOI: 10.1021/acs.molpharmaceut.7b00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The triterpenoid ursolic acid (UA) has been proposed as a potential cancer chemopreventive agent in many preclinical and clinical studies. In the present work, we aimed to characterize the pharmacokinetics (PK) of UA and to quantitatively assess the antioxidative and anti-inflammatory effects of UA, which are potentially linked to its chemopreventive efficacy. UA was administered intravenously (i.v., 20 mg/kg) or by oral gavage (100 mg/kg) to male Sprague-Dawley rats, and blood samples were collected at a series of designated time points. The plasma concentration of UA was determined using a validated liquid chromatography-mass spectrometry (LC-MS) approach. A biexponential decline in the UA plasma concentration was observed after i.v. dosing and was fitted to a two-compartmental model. The expression levels of phase II drug metabolism (DM)/antioxidant genes and the inflammatory iNos gene in corresponding treatment arms were measured using qPCR as a pharmacodynamic (PD) marker. The expression of phase II DM/antioxidant genes increased and peaked approximately 3 h after 20 mg/kg UA treatment. In a lipopolysaccharide (LPS)-induced acute inflammation model, UA inhibited LPS-stimulated iNos expression and that of the epigenetic markers the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) in leukocytes. A PK-PD model using Jusko's indirect response model (IDR) with transition compartments (TC) was established to describe the time delay and magnitude of the gene expression elicited by UA. The PK-PD model provided reasonable fitting linking the plasma concentration of UA simultaneously with the PD response based on leukocyte mRNA expression. Overall, our results indicate that UA is effective at inducing various phase II DM/antioxidant genes and inhibiting pro-inflammatory genes in vivo. This PK-PD modeling approach may provide a conceptual framework for the future clinical evaluation of dietary chemopreventive agents in humans.
Collapse
Affiliation(s)
- Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David Cheng
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P. Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
|
8
|
Salim T, May EE. In silico Kinetic Model of iNOS expression in macrophages. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1159-61. [PMID: 25570169 DOI: 10.1109/embc.2014.6943801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are a key component in the host innate response and are major contributors to the proinflammatory response against pathogens. One of the key players in the proinflammatory response is induced nitric oxide synthase (iNOS), an enzyme that provides the nitric oxide needed by phagocytic cells to create reactive nitrogen species, which are highly damaging to intracellular pathogens. To model the macrophage intracellular mechanism of iNOS gene expression, we use a systems biology approach to capture the dynamics of the iNOS gene expression system stimulated by bacterial lipopolysaccharide (LPS) and IFN-γ. Our simulation results agree with in vitro assays of iNOS gene expression and provide a platform for further investigating the potential impact of LPS and IFN-γ variations on macrophage effector function.
Collapse
|
9
|
Abstract
Inflammation is an array of immune responses to infection and injury. It results from a complex immune cascade and is the basis of many chronic diseases such as arthritis, diabetes, and cancer. Numerous mathematical models have been developed to describe the disease progression and effects of anti-inflammatory drugs. This review illustrates the state of the art in modeling the effects of diverse drugs for treating inflammation, describes relevant biomarkers amenable to modeling, and summarizes major advantages and limitations of the published pharmacokinetic/ pharmacodynamic (PK/PD) models. Simple direct inhibitory models are often used to describe in vitro effects of anti-inflammatory drugs. Indirect response models are more mechanism based and have been widely applied to the turnover of symptoms and biomarkers. These, along with target-mediated and transduction models, have been successfully applied to capture the PK/PD of many anti-inflammatory drugs and describe disease progression of inflammation. Biologics have offered opportunities to address specific mechanisms of action, and evolve small systems models to quantitatively capture the underlying physiological processes. More advanced mechanistic models should allow evaluation of the roles of some key mediators in disease progression, assess drug interactions, and better translate drug properties from in vitro and animal data to patients.
Collapse
Affiliation(s)
- Hoi-Kei Lon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|