1
|
Shaw P, Klausen M, Lilienkampf A, Bradley M. Fluorophore-Tagged Poly-Lysine RAFT Agents: Controlled Synthesis of Trackable Cell-Penetrating Peptide-Polymers. ACS Macro Lett 2023; 12:1280-1285. [PMID: 37695265 PMCID: PMC10586461 DOI: 10.1021/acsmacrolett.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The conjugation of a fluorophore and a variety of cell-penetrating peptides onto a RAFT agent allowed for the synthesis of polymers of defined sizes with quantifiable cell-uptake. Each peptide-RAFT agent was used to polymerize acrylamide, acrylate, and styrene monomers to form high or low molecular weight polymers (here 50 or 7.5 kDa) with the peptide having no influence on the RAFT agent's control. The incorporation of a single fluorophore per polymer chain allowed cellular analysis of the uptake of the size-specific peptide-polymers via flow cytometry and confocal microscopy. The cell-penetrating peptides had a direct effect on the efficiency of polymer uptake for both high and low molecular weight polymers, demonstrating the versatility of the strategy. These "all-in-one", synthetically accessible RAFT agents allow highly controlled preparation of synthetic peptide-polymer conjugates and subsequent quantification of their delivery into cells.
Collapse
Affiliation(s)
- Paige
A. Shaw
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Maxime Klausen
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Annamaria Lilienkampf
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
| | - Mark Bradley
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, U.K.
- Precision
Healthcare University Research Institute, Queen Mary University of London, 65-67 New Road, E1 1HH London, U.K.
| |
Collapse
|
2
|
Relitti N, Saraswati AP, Carullo G, Papa A, Monti A, Benedetti R, Passaro E, Brogi S, Calderone V, Butini S, Gemma S, Altucci L, Campiani G, Doti N. Design and Synthesis of New Oligopeptidic Parvulin Inhibitors. ChemMedChem 2022; 17:e202200050. [PMID: 35357776 PMCID: PMC9321596 DOI: 10.1002/cmdc.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Pin1 catalyzes the cis-trans isomerization of pThr-Pro or pSer-Pro amide bonds of different proteins involved in several physio/pathological processes. In this framework, recent research activity is directed towards the identification of new selective Pin1 inhibitors. Here, we developed a set ( 5a - p ) of peptide-based Pin1 inhibitors. Direct-binding experiments allowed the identification of the peptide-based inhibitor 5k as a potent ligand of Pin1. Notably, 5k binds Pin1 with a higher affinity compared to Pin4. The comparative analysis of molecular models of Pin1 and Pin4 with the selected compound, gave a rational explanation of the biochemical activity, and pinpointed the chemical elements that, if opportunely modified, may further improve inhibitory potency, pharmacological properties and selectivity of future peptide-based Parvulin inhibitors. Since 5k showed a limited cell penetration and no antiproliferative activity, it was conjugated to a polyarginine stretch, known to promote cell penetration of peptides, to obtain R8-5k derivative, which displayed an anti-proliferative effect on cancer cell lines compared to non-tumor cells. The effect of R8 on cell proliferation was also investigated. This work doubts the application of the R8 strategy for the development of cell penetrating antiproliferative peptides since it is not inert.
Collapse
Affiliation(s)
- Nicola Relitti
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Gabriele Carullo
- University of Siena: Universita degli Studi di Siena, DBCF, 2, Aldo Moro, 53100 Siena Italy, 53100, Siena, ITALY
| | - Alessandro Papa
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | | | - Rosaria Benedetti
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Eugenia Passaro
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Simone Brogi
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Vincenzo Calderone
- University of Pisa Department of Pharmaceutical Sciences: Universita degli Studi di Pisa Dipartimento di Farmacia, Pharmacy, ITALY
| | - Stefania Butini
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Sandra Gemma
- University of Siena: Universita degli Studi di Siena, DBCF, ITALY
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli: Universita degli Studi della Campania Luigi Vanvitelli, Medicine, ITALY
| | - Giuseppe Campiani
- Universita degli Studi di Siena, Dipartimento di Biotecnologie, Via Aldo Moro 2, 53100, Siena, ITALY
| | - Nunzianna Doti
- CNR: Consiglio Nazionale delle Ricerche, Bioimaging, ITALY
| |
Collapse
|
3
|
Carvalho DN, Reis RL, Silva TH. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomater Sci 2021; 9:6718-6736. [PMID: 34494053 DOI: 10.1039/d1bm00809a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Shoari A, Tooyserkani R, Tahmasebi M, Löwik DWPM. Delivery of Various Cargos into Cancer Cells and Tissues via Cell-Penetrating Peptides: A Review of the Last Decade. Pharmaceutics 2021; 13:1391. [PMID: 34575464 PMCID: PMC8470549 DOI: 10.3390/pharmaceutics13091391] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse amino acid sequences with the ability to cross cellular membranes. CPPs can deliver several bioactive cargos, including proteins, peptides, nucleic acids and chemotherapeutics, into cells. Ever since their discovery, synthetic and natural CPPs have been utilized in therapeutics delivery, gene editing and cell imaging in fundamental research and clinical experiments. Over the years, CPPs have gained significant attention due to their low cytotoxicity and high transduction efficacy. In the last decade, multiple investigations demonstrated the potential of CPPs as carriers for the delivery of therapeutics to treat various types of cancer. Besides their remarkable efficacy owing to fast and efficient delivery, a crucial benefit of CPP-based cancer treatments is delivering anticancer agents selectively, rather than mediating toxicities toward normal tissues. To obtain a higher therapeutic index and to improve cell and tissue selectivity, CPP-cargo constructions can also be complexed with other agents such as nanocarriers and liposomes to obtain encouraging outcomes. This review summarizes various types of CPPs conjugated to anticancer cargos. Furthermore, we present a brief history of CPP utilization as delivery systems for anticancer agents in the last decade and evaluate several reports on the applications of CPPs in basic research and preclinical studies.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mehdi Tahmasebi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran; (A.S.); (R.T.); (M.T.)
| | - Dennis W. P. M. Löwik
- Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacol Res 2020; 162:105231. [PMID: 33027717 DOI: 10.1016/j.phrs.2020.105231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Cancer is the second leading cause of death in the world and its treatment is extremely challenging, mainly due to its complexity. Cell-Penetrating Peptides (CPPs) are peptides that can transport into the cell a wide variety of biologically active conjugates (or cargoes), and are, therefore, promising in the treatment and in the diagnosis of several types of cancer. Some notable examples are TAT and Penetratin, capable of penetrating the central nervous system (CNS) and, therefore, acting in cancers of this system, such as Glioblastoma Multiforme (GBM). These above-mentioned peptides, conjugated with traditional chemotherapeutic such as Doxorubicin (DOX) and Paclitaxel (PTX), have also been shown to induce apoptosis of breast and liver cancer cells, as well as in lung cancer cells, respectively. In other cancers, such as esophageal cancer, the attachment of Magainin 2 (MG2) to Bombesin (MG2B), another CPP, led to pronounced anticancer effects. Other examples are CopA3, that selectively decreased the viability of gastric cancer cells, and the CPP p28. Furthermore, in preclinical tests, the anti-tumor efficacy of this peptide was evaluated on human breast cancer, prostate cancer, ovarian cancer, and melanoma cells in vitro, leading to high expression of p53 and promoting cell cycle arrest. Despite the numerous in vitro and in vivo studies with promising results, and the increasing number of clinical trials using CPPs, few treatments reach the expected clinical efficacy. Usually, their clinical application is limited by its poor aqueous solubility, immunogenicity issues and dose-limiting toxicity. This review describes the most recent advances and innovations in the use of CPPs in several types of cancer, highlighting their crucial importance for various purposes, from therapeutic to diagnosis. Further clinical trials with these peptides are warranted to examine its effects on various types of cancer.
Collapse
|
6
|
Liu Y, Wang Z, Li X, Ma X, Wang S, Kang F, Yang W, Ma W, Wang J. Near-Infrared Fluorescent Peptides with High Tumor Selectivity: Novel Probes for Image-Guided Surgical Resection of Orthotopic Glioma. Mol Pharm 2018; 16:108-117. [PMID: 30517013 DOI: 10.1021/acs.molpharmaceut.8b00888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complete excision of glioblastomas with maximal retention of surrounding normal tissues can have a positive effect on the survival status and quality of life of patients. Near-infrared fluorescence (NIRF) optical imaging of the tumor vasculature offers a noninvasive method for detection of early stage glioblastoma and efficient monitoring of therapeutic responses. The aim of this study was to develop a novel NIRF imaging probe as a visualization tool for image-guided surgical resection of orthotopic glioblastoma. In this study, Cy5.5-RKL, Cy5.5-NKL, and Cy5.5-DKL probes were successfully synthesized, and their properties were investigated in vitro and in vivo. In vivo, Cy5.5-RKL and Cy5.5-NKL were able to detect U87MG xenografts for at least 8 h post injection. The maximum tumor-to-muscle ratios of Cy5.5-RKL and Cy5.5-NKL were 7.65 ± 0.72 and 5.43 ± 0.72, respectively. Of the probes, Cy5.5-RKL displayed the best delineation of the boundaries between orthotopic glioblastomas and normal brain tissue at 8 h p.i. In conclusion, NIRF imaging using Cy5.5-RKL is promising not only for diagnostic purposes but also for use in image-guided surgery for orthotopic glioblastoma or other superficial tumors.
Collapse
Affiliation(s)
- Yi Liu
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Zhengjie Wang
- Department of Nuclear Medicine , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| | - Xiang Li
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Shuailiang Wang
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Weidong Yang
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Wenhui Ma
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| |
Collapse
|
7
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
8
|
Zaiden M, Rütter M, Shpirt L, Ventura Y, Feinshtein V, David A. CD44-Targeted Polymer-Paclitaxel Conjugates to Control the Spread and Growth of Metastatic Tumors. Mol Pharm 2018; 15:3690-3699. [PMID: 29957956 DOI: 10.1021/acs.molpharmaceut.8b00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the greatest challenges in cancer therapy is to control metastatic spread, seeding, and growth of tumors in distant organs. Recently, we reported on the design of a novel "drug-free" therapeutic copolymer bearing the antimigratory A5G27 peptide, designated P-(A5G27)-FITC, that shows excellent specificity to cancer cells overexpressing CD44v3 and CD44v6 and inhibits cancer cell migration and invasion. We demonstrated that P-(A5G27)-FITC accumulated preferentially in subcutaneous (sc) implanted 4T1 tumors following parenteral administration. Moreover, we showed that pretreatment of mice with P-(A5G27)-FITC prior to 4T1 cell inoculation inhibited colonization of circulating 4T1 cells in the lungs. In this study, we designed a new polymer-peptide-drug conjugate to inhibit vigorously growing primary tumors and control invasive behavior of cancer cells. To this end, the antimitotic drug (paclitaxel, PTX) was conjugated to P-(A5G27)-FITC. The targeted polymer-drug conjugate (P-(A5G27)-PTX) was significantly more toxic toward CD44-overexpressing cancer cells than the nontargeted copolymer. In vivo, a single iv injection of P-(A5G27)-PTX prolonged the survival of C57BL/6 mice with established B16-F10 lung metastases. When injected intraperitoneally into BALB/c mice implanted sc with 4T1 tumors, P-(A5G27)-PTX significantly decreased the rate of primary tumor growth, increased the median survival of mice, and reduced the number of 4T1 metastases in the lungs when compared to nontargeted copolymer. Most interestingly, the CD44-targeted "drug-free" copolymer P-(A5G27) (without PTX) significantly inhibited the rate of tumor growth and further prolonged the median survival time of mice to the same extent as the PTX-containing formulations (P-(A5G27)-PTX or free PTX). Overall, this study highlights the therapeutic potential of the HPMA copolymer-A5G27 conjugates ("drug-free" and PTX-bearing copolymers) to control the metastatic spread of cancer.
Collapse
|
9
|
Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 2016; 34:291-301. [PMID: 25948376 DOI: 10.1007/s10555-015-9554-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
10
|
Golan M, Feinshtein V, David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm 2016; 109:103-112. [PMID: 27702685 DOI: 10.1016/j.ejpb.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023]
Abstract
The key for successful gene silencing is to design a safe and efficient siRNA delivery system for the transfer of therapeutic nucleic acids into the target cells. Here, we describe the design of hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer displaying multiple copies of octaarginine (R8) and its use in promoting the effective delivery of small interfering RNA (siRNA) molecules intracellularly. Fluorescein-5-isothiocyanate (FITC)-labeled HPMA copolymer-bound R8 (P-R8-FITC) was synthesized with increasing R8 molar ratios (4-9.5mol-%) to define the optimal R8 content that allowed the polymer to serve both as a siRNA-binding domain and as an intracellular transduction moiety mediating improved cellular delivery. A subunit of the influenza virus hemagglutinin (HA2), known for its ability to disrupt endosomal membranes, was further conjugated to P-R8-FITC copolymer to promote endosomal escape. Of the different P-(R8)-FITC conjugates considered, only that polymer containing the highest mol-% of R8 (P-(R8)9.5-FITC) was able to encapsulate siRNA molecules into nano-sized polyion complexes (PICs) presenting positive surface charge, low in vitro cytotoxicity, and high serum stability. P-(R8)9.5-FITC/cy5-siRNA complexes can efficiently deliver siRNA molecules into cells, while naked siRNA or siRNA encapsulated within polymers with lower R8mol-% were unable to transfect the same cells. Conjugation of HA2 fusogenic peptide to P-(R8)-FITC significantly decreased the oncogenic RAC1 mRNA levels in cancer cells. This indicates that P-(R8)-(HA2)-FITC can deliver siRNA into target cells, and that the siRNA can reach the perinuclear region where it interacts with the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
11
|
Guan S, Li L, Zhu X, Yang Y, Zhang Z, Huang Y. An in vitro investigation of a detachable fork-like structure as efficient nuclear-targeted sub-unit in A2780 cell cultures. Int J Pharm 2016; 500:100-9. [PMID: 26784985 DOI: 10.1016/j.ijpharm.2016.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/25/2022]
Abstract
The pharmacological target of many anticancer drugs is those molecules associated with genetic information which are localized in nucleus. To efficiently deliver drugs into cancer cell nucleus, in our previous study, a fork-like sub-unit, with one end conjugated with a targeting peptide named R8NLS (CRRRRRRRRPKKKRKV) and the other end conjugated with c-Myc oncogene inhibitor H1-S6A,F8A (H1) peptide, was linked onto the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via an enzyme degradable glycylphenylalanylleucylglycine (GFLG) tetrapeptide spacer. Here, an in vitro mechanism investigation of the fork-like sub-unit was studied in detail. We found that the fusion with two complementary R8 and NLS motifs is required to exert the multifunctional targeting capability of the tandem R8NLS peptide in overcoming various intracellular barriers, including enhancing cellular uptake, facilitating endosomal escape and penetrating through the double-layered nuclear membrane. Also required is the tactful detachment of the fork-like sub-unit from the copolymer in response to intracellular stimulus, because a smaller sub-unit not only increases the intracellular trafficking efficiency by reducing the size burden of magical bullet R8NLS, but also guarantees successful entry through the restricted nucleopore. Herein, this study highlights that both nuclear targeting ligand R8NLS and detachable fork-like sub-unit are dispensable for programmed nuclear delivery and may show feasibility on other drug delivery systems, such as nanoparticles and micelles.
Collapse
Affiliation(s)
- Shan Guan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Xi Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Yang Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
12
|
Kurrikoff K, Gestin M, Langel Ü. Recentin vivoadvances in cell-penetrating peptide-assisted drug delivery. Expert Opin Drug Deliv 2015; 13:373-87. [DOI: 10.1517/17425247.2016.1125879] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Zaro JL, Shen WC. Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1538-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Shen M, Xu YY, Sun Y, Han BS, Duan YR. Preparation of a Thermosensitive Gel Composed of a mPEG-PLGA-PLL-cRGD Nanodrug Delivery System for Pancreatic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20530-20537. [PMID: 26366977 DOI: 10.1021/acsami.5b06043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is hypothesized that a gel (NP-Gel) composed of thermosensitive gel (Gel) and nanoparticles (NP) can prolong drug release time and overcome the drug resistance of pancreatic tumor cells. Paclitaxel (PTX)-loaded monomethoxy (polyethylene glycol)-poly(d,l-lactide-co-glycolide)-poly(l-lysine)-cyclic peptide (arginine-glycine-aspartic-glutamic-valine acid) (mPEG-PLGA-PLL-cRGD) NP and NP-Gel were designed, optimized, and characterized using dynamic light scattering, transmission electron microscopy, high efficiency liquid chromatography, and rheological analyses. Aspc-1/PTX cell was used in a cell uptake test. A 3D cell model was used to mimic PTX elimination in tissue. The in vivo sustained release and antitumor effects were studied in Aspc-1/PTX-loaded nude mice with xerographic and in situ tumors. The NP were 133.7 ± 28.3 nm with 85.03% entrapped efficiency, 1.612% loaded ratio, and suitable rheological properties. PTX was released as NP from NP-Gel, greatly prolonging the release and elimination times to afford long-term effects. NP-Gel enhanced the uptake of PTX by Aspc-1/PTX cells more than using NP or the Gel alone. Gel and NP-Gel remained solid in the tumor and stayed over 50 days versus the several days of NP in solution. NP-Gel exhibited a much higher inhibition rate in vivo than in solution, NP, or the Gel alone. In conclusion, the antitumor effects of NP-Gel might arise from synergic effects from NP and the Gel. NP primarily reversed drug resistance, while the Gel prolonged release time considerably in situ. This preparation proved effective with a very small PTX dose (250 μg/kg) and exhibited few toxic effects in normal tissue.
Collapse
Affiliation(s)
- Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| | - Bao-Shan Han
- Department of general Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University , Shanghai, 200092, P. R. China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, Zong S, Chen K, Wang J. A direct comparison of tumor angiogenesis with ⁶⁸Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging. Amino Acids 2014; 46:2355-64. [PMID: 24990522 DOI: 10.1007/s00726-014-1788-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022]
Abstract
Peptides containing asparagine-glycine-arginine (NGR) and arginine-glycine-aspartic acid (RGD) sequence are being developed for tumor angiogenesis-targeted imaging and therapy. The aim of this study was to compare the efficacy of NGR- and RGD-based probes for imaging tumor angiogenesis in HT-1080 tumor xenografts. Two PET probes, (68)Ga-NOTA-G₃-NGR2 and ⁶⁸Ga-NOTA-G₃-RGD2, were successfully prepared. In vitro stability, partition coefficient, tumor cell binding, as well as in vivo biodistribution properties were also analyzed for both PET probes. The results revealed that the two probes were both hydrophilic and stable in vitro and in vivo, and they were excreted predominately and rapidly through the kidneys. For both probes, the higher tumor uptake and lower accumulation in vital organs were determined. No significant difference between two probes was observed in terms of tumor uptake and the in vivo biodistribution properties. We concluded that these two probes are promising in tumor angiogenesis imaging. ⁶⁸Ga-NOTA-G₃-NGR2 has the potential as an alternative for PET imaging in patients with fibrosarcoma, and it may offer an opportunity to noninvasively monitor CD13-targeted therapy.
Collapse
Affiliation(s)
- Yahui Shao
- Department of Nuclear Medicine, Xijing Hospital, The Fourth Military Medical University, 15 Changle West Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Perisé-Barrios AJ, Jiménez JL, Domínguez-Soto A, de la Mata FJ, Corbí AL, Gomez R, Muñoz-Fernandez MÁ. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J Control Release 2014; 184:51-7. [PMID: 24721235 DOI: 10.1016/j.jconrel.2014.03.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022]
Abstract
Despite the use of siRNA in the downregulation of HIV-1 replication which has been reported, CD4 T lymphocytes are difficult to transfect with non-viral vectors. We determined whether second generation carbosilane dendrimers (2G-NN16 and 2G-03NN24) may be efficient transfectants in CD4 T lymphocytes. Dendrimers were also tested on macrophages to determine whether they can modify macrophage phenotype and induce an inflammatory response. The nanoconjugate formed by 2G-03NN24/siRNA-Nef presents the highest inhibition of HIV-1 replication. Dendrimers presented safety properties because they did not induce proliferation on CD4 T lymphocytes and decrease the release of TNFα and IL-12p40 by macrophages. Both dendrimers also decrease the phagocytosis activity. Additionally, 2G-03NN24 dendrimer decreases the CCL2 and CCR2 expression in macrophages. Carbosilane dendrimers 2G-NN16 and 2G-03NN24 can be used as efficient non-viral vectors for gene therapy applications, mainly in the treatment of HIV infection.
Collapse
Affiliation(s)
- Ana Judith Perisé-Barrios
- Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Angeles Domínguez-Soto
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid E-28871, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Angel L Corbí
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rafael Gomez
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid E-28871, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - María Ángeles Muñoz-Fernandez
- Laboratorio Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|