1
|
Bramham JE, Wang Y, Moore SA, Golovanov AP. Assessing Photostability of mAb Formulations In Situ Using Light-Coupled NMR Spectroscopy. Anal Chem 2024; 96:9935-9943. [PMID: 38847283 PMCID: PMC11190875 DOI: 10.1021/acs.analchem.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024]
Abstract
Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.
Collapse
Affiliation(s)
- Jack E. Bramham
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Yujing Wang
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Stephanie A. Moore
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
2
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Singh SM, Furman R, Singh RK, Balakrishnan G, Chennamsetty N, Tao L, Li Z. Size exclusion chromatography for the characterization and quality control of biologics. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1979582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Surinder M. Singh
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Ran Furman
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Rajesh K. Singh
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | | | | | - Li Tao
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| | - Zhengjian Li
- Analytical Development and Attribute Sciences, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Apostol I, Bondarenko PV, Ren D, Semin DJ, Wu CH, Zhang Z, Goudar CT. Enabling development, manufacturing, and regulatory approval of biotherapeutics through advances in mass spectrometry. Curr Opin Biotechnol 2021; 71:206-215. [PMID: 34508981 DOI: 10.1016/j.copbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Rapid technological advances have significantly improved the capability, versatility, and robustness of mass spectrometers which has led to them playing a central role in the development, characterization, and regulatory filings of biopharmaceuticals. Their application spans the entire continuum of drug development, starting with discovery research through product development, characterization, and marketing authorization and continues well into product life cycle management. The scope of application extends beyond traditional protein characterization and includes elements like clone selection, cell culture physiology and bioprocess optimization, investigation support, and process analytical technology. More recently, advances in the MS-based multi-attribute method are enabling the introduction of MS in a cGMP environment for routine release and stability testing. While most applications of MS to date have been for monoclonal antibodies, the successes and learnings should translate to the characterization of next-gen biotherapeutics where modalities like multispecifics could be more prevalent. In this review, we describe the most significant advances in MS and correlate them to the broad spectrum of applications to biotherapeutic development. We anticipate rapid technological improvements to continue that will further accelerate widespread deployment of MS, thereby elevating our overall understanding of product quality and enabling attribute-focused product development.
Collapse
Affiliation(s)
- Izydor Apostol
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Da Ren
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chao-Hsiang Wu
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
5
|
Prajapati I, Larson NR, Choudhary S, Kalonia C, Hudak S, Esfandiary R, Middaugh CR, Schöneich C. Visible Light Degradation of a Monoclonal Antibody in a High-Concentration Formulation: Characterization of a Tryptophan-Derived Chromophoric Photo-product by Comparison to Photo-degradation of N-Acetyl-l-tryptophan Amide. Mol Pharm 2021; 18:3223-3234. [PMID: 34482697 DOI: 10.1021/acs.molpharmaceut.1c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the discoloration of a highly concentrated monoclonal antibody (mAbZ) in sodium acetate (NaAc) and histidine/lysine (His/Lys) buffer after exposure to visible light. The color change of the mAbZ formulation was significantly more intense in NaAc buffer and developed a characteristic absorbance with a λmax of ca. 450 nm. We characterized this photo-chemically generated chromophore by comparison with visible light photo-degradation of a concentrated solution of a model compound for protein Trp residues, N-acetyl-l-tryptophan amide (NATA). The photo-degradation of NATA generated a chromophoric product with a λmax of ca. 450 nm and UV-vis spectroscopic properties identical to those of the product generated from mAbZ. This product was isolated and analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and 1H, 13C, and 1H-13C heteronuclear single-quantum correlation NMR spectroscopy. MS/MS analysis reveals a product characterized by the loss of 33 Da from NATA, referred to as NATA-33. Together, the NMR data suggest that this product may be N-(2,4-dihydrocyclopenta[b]indol-2-yl)acetamide (structure P3a) or a tautomer (P3b-d).
Collapse
Affiliation(s)
- Indira Prajapati
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States.,Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nicholas R Larson
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Sureshkumar Choudhary
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Cavan Kalonia
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Suzanne Hudak
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Reza Esfandiary
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Appearance and Formation Analysis of Multimers in High Concentration Antibodies. Chromatographia 2021. [DOI: 10.1007/s10337-021-04015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Djemal L, von Hagen J, Kolmar H, Deparis V. Characterization of soy protein hydrolysates and influence of its iron content on monoclonal antibody production by a murine hybridoma cell line. Biotechnol Prog 2021; 37:e3147. [PMID: 33742790 DOI: 10.1002/btpr.3147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/12/2022]
Abstract
A challenging aspect with the use of protein hydrolysates in commercial manufacturing processes of recombinant therapeutic proteins is their impacts on the protein production due to a lack of understanding of batch-to-batch variability. Soy hydrolysates variability and its impact on fed-batch production of a recombinant monoclonal antibody (mAb) expressed in Sp2/0 cells were studied using 37 batches from the same vendor. The batch-to-batch variability of soy hydrolysates impacted cell growth, titer and product quality. Physicochemical characterization of batches confirmed that soy hydrolysates are mainly a source of amino acids and peptides containing lower amounts of other components such as carbohydrates and chemical elements in cell culture media. Soy hydrolysates composition of different batches was consistent except for trace elements. Statistical analyses identified iron as a potential marker of a poor process performance. To verify this correlation, two forms of iron, ferric ammonium citrate and ferrous sulfate, were added to a batch of soy hydrolysates associated to a low level of iron during cell culture. Both forms of iron reduced significantly cell growth, mAb titer and increased level of the acidic charge variants of the mAb. Consequently, trace element composition of soy hydrolysates or of all incoming raw materials might lead to significant impacts on process performance and product quality and therefore need to be tightly controlled.
Collapse
Affiliation(s)
- Leïla Djemal
- Manufacturing Science and Technology, Heathcare, Merck KGaA, Corsier-sur-Vevey, Switzerland.,Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Harald Kolmar
- Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Véronique Deparis
- Manufacturing Science and Technology, Heathcare, Merck KGaA, Corsier-sur-Vevey, Switzerland
| |
Collapse
|
8
|
Xu J, Zheng S, Dawood Z, Hill C, Jin W, Xu X, Ding J, Borys MC, Ghose S, Li ZJ, Pendse G. Productivity improvement and charge variant modulation for intensified cell culture processes by adding a carboxypeptidase B (CpB) treatment step. Biotechnol Bioeng 2021; 118:3334-3347. [PMID: 33624836 DOI: 10.1002/bit.27723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Shun Zheng
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zeinab Dawood
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Charles Hill
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Weixin Jin
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Girish Pendse
- Global Product Development and Supply, Bristol Myers Squibb Company, Summit, New Jersey, USA
| |
Collapse
|
9
|
Chevallier V, Zoller M, Kochanowski N, Andersen MR, Workman CT, Malphettes L. Use of novel cystine analogs to decrease oxidative stress and control product quality. J Biotechnol 2020; 327:1-8. [PMID: 33373629 DOI: 10.1016/j.jbiotec.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Continuous improvements of cell culture media are required in order to ensure high yield and product quality. However, some components can be instable and lead to detrimental effects on bioprocess performances. l-cysteine is an essential amino acid commonly used in cell culture media. Despite its beneficial effect on recombinant protein production, in some cases, this component can be responsible for product microheterogeneity. In this context, alternative components have to be found in order to reduce product variants while maintaining high productivity. In this study, we have assessed the performance of different cysteine and cystine analogs : N-acetyl-cysteine, s-sulfocysteine, N,N'-diacetyl-l-cystine and the N,N'-diacetyl-l-cystine dimethylester (DACDM). Replacement of cysteine by cystine analogs, and especially DACDM, has shown positive impact on charge variants level and recombinant protein coloration level. Moreover, this molecule contributed to the increase of the intracellular glutathione pool, which suggests a close relationship with the oxidative stress regulation.
Collapse
Affiliation(s)
- Valentine Chevallier
- UCB Nordic A/S, Upstream Process Sciences, Copenhagen, Denmark; Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark.
| | - Marvin Zoller
- UCB Pharma S.A., Upstream Process Sciences, Braine l'Alleud, Belgium
| | | | - Mikael R Andersen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark
| | - Christopher T Workman
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark
| | | |
Collapse
|
10
|
Holstein M, Hung J, Feroz H, Ranjan S, Du C, Ghose S, Li ZJ. Strategies for high‐concentration drug substance manufacturing to facilitate subcutaneous administration: A review. Biotechnol Bioeng 2020; 117:3591-3606. [DOI: 10.1002/bit.27510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Melissa Holstein
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Jessica Hung
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Hasin Feroz
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Swarnim Ranjan
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Cheng Du
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| |
Collapse
|
11
|
Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J Pharm Sci 2020; 109:116-133. [DOI: 10.1016/j.xphs.2019.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
12
|
Mechanisms of color formation in drug substance and mitigation strategies for the manufacture and storage of therapeutic proteins produced using mammalian cell culture. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Barnett GV, Balakrishnan G, Chennamsetty N, Hoffman L, Bongers J, Tao L, Huang Y, Slaney T, Das TK, Leone A, Kar SR. Probing the Tryptophan Environment in Therapeutic Proteins: Implications for Higher Order Structure on Tryptophan Oxidation. J Pharm Sci 2019; 108:1944-1952. [DOI: 10.1016/j.xphs.2018.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
|
14
|
Cao X, Flagg SC, Li X, Chennamsetty N, Balakrishnan G, Das TK. Quadrupole Dalton-Based Controlled Proteolysis Method for Characterization of Higher Order Protein Structure. Anal Chem 2019; 91:5339-5345. [DOI: 10.1021/acs.analchem.9b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Cao
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Shannon C. Flagg
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Xue Li
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Naresh Chennamsetty
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Gurusamy Balakrishnan
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Tapan K. Das
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| |
Collapse
|
15
|
|
16
|
Balakrishnan G, Barnett GV, Kar SR, Das TK. Detection and Identification of the Vibrational Markers for the Quantification of Methionine Oxidation in Therapeutic Proteins. Anal Chem 2018; 90:6959-6966. [PMID: 29741878 DOI: 10.1021/acs.analchem.8b01238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methionine oxidation is a major degradation pathway in therapeutic proteins which can impact the structure and function of proteins as well as risk to drug product quality. Detecting Met oxidation in proteins by peptide mapping followed by liquid chromatography with mass spectrometry (LC-MS) is the industry standard but is also labor intensive and susceptible to artifacts. In this work, vibrational difference spectroscopy in combination with 18O isotopic shift enabled us to demonstrate the application of Raman and FTIR techniques for the detection and quantification of Met oxidation in various therapeutic proteins, including mAbs, fusion proteins, and antibody drug conjugate. Vibrational markers of Met oxidation products, such as sulfoxide and sulfone, corresponding to S═O and C-S═O stretching frequencies were unequivocally identified based 18O isotoptic shifts. The intensity of the isolated νC-S Raman band at 702 cm-1 was successfully applied to quantify the average Met oxidation level in multiple proteins. These results are further corroborated by oxidation levels measured by tryptic peptide mapping, and thus the confirmed Met oxidation levels derived from Raman and mass spectrometry are indeed consistent with each other. Thus, we demonstrate the broader application of vibrational spectroscopy to detect the subtle spectral changes associated with various chemical or physical degradation of proteins, including Met oxidation as well as higher order structural changes.
Collapse
Affiliation(s)
- Gurusamy Balakrishnan
- Molecular and Analytical Development , Bristol-Myers Squibb , 311 Pennington Rocky Hill Road , Pennington , New Jersey 08534 , United States
| | - Gregory V Barnett
- Molecular and Analytical Development , Bristol-Myers Squibb , 311 Pennington Rocky Hill Road , Pennington , New Jersey 08534 , United States
| | - Sambit R Kar
- Molecular and Analytical Development , Bristol-Myers Squibb , 311 Pennington Rocky Hill Road , Pennington , New Jersey 08534 , United States
| | - Tapan K Das
- Molecular and Analytical Development , Bristol-Myers Squibb , 311 Pennington Rocky Hill Road , Pennington , New Jersey 08534 , United States
| |
Collapse
|
17
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
18
|
Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. MAbs 2018; 10:488-499. [PMID: 29388872 DOI: 10.1080/19420862.2018.1433978] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.
Collapse
Affiliation(s)
- Jianlin Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Matthew S Rehmann
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Xuankuo Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Chao Huang
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Jun Tian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Nan-Xin Qian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Zheng Jian Li
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| |
Collapse
|
19
|
Du C, Martin R, Huang Y, Borwankar A, Tan Z, West J, Singh N, Borys M, Ghose S, Ludwig R, Tao L, Li ZJ. Vitamin B 12 association with mAbs: Mechanism and potential mitigation strategies. Biotechnol Bioeng 2017; 115:900-909. [PMID: 29205285 DOI: 10.1002/bit.26511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Process control for manufacturing biologics is critical for ensuring product quality, safety, and lot to lot consistency of therapeutic proteins. In this study, we investigated the root cause of the pink coloration observed for various in-process pools and drug substances in the antibody manufacturing process. Vitamin B12 is covalently bound to mAbs via a cobalt-sulfur coordinate bond via the cysteine residues. The vitamin B12 was identified to attach to an IgG4 molecule at cysteine residues on light chain (Cys-214), and heavy chain (Cys-134, Cys-321, Cys-367, and Cys-425). Prior to attachment to mAbs, the vitamin B12 needs to be in its active form of hydroxocobalamin. During culture media preparation, storage and cell culture processing, cyanocobalamin, the chemical form of vitamin B12 added to media, is converted to hydroxocobalamin by white fluorescence light (about 50% degradation in 11-14 days at room temperature and with room light intensity about 500-1,000 lux) and by short-wavelength visible light (400-550 nm). However, cyanocobalamin is stable under red light (wavelength >600 nm) exposure and does not convert to hydroxocobalamin. Our findings suggests that the intensity of pink color depends on concentrations of both free sulfhydryl groups on reduced mAb and hydroxocobalamin, the active form of vitamin B12 . Both reactants are necessary and neither one of them is sufficient to generate pink color, therefore process control strategy can consider limiting either one or both factors. A process control strategy to install red light (wavelength >600 nm) in culture media preparation, storage and culture processing areas is proposed to provide safe light for biologics and to prevent light-induced color variations in final products.
Collapse
Affiliation(s)
- Cheng Du
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Robert Martin
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Yunping Huang
- Molecular and Analytic Development, Bristol-Myers Squibb, Pennington, New Jersey
| | - Ameya Borwankar
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Zhijun Tan
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Jay West
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Nripen Singh
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Michael Borys
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Sanchayita Ghose
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| | - Richard Ludwig
- Molecular and Analytic Development, Bristol-Myers Squibb, Pennington, New Jersey
| | - Li Tao
- Molecular and Analytic Development, Bristol-Myers Squibb, Pennington, New Jersey
| | - Zheng Jian Li
- Process Development, Bristle-Myers Squibb, Devens, Massachusetts
| |
Collapse
|
20
|
Mahler HC, Allmendinger A. Stability, Formulation, and Delivery of Biopharmaceuticals. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Andrea Allmendinger
- F. Hoffmann-La Roche AG; Pharmaceutical Development & Supplies Biologics EU, Late-Stage Pharmaceutical and Processing Development; Grenzacherstrasse 124 4070 Basel Switzerland
| |
Collapse
|