1
|
de Souza CS, Lopes VRDC, Barcellos G, Alexandrino-Junior F, Neves PCDC, Patricio BFDC, Rocha HVA, Ano Bom APD, Figueiredo ABC. Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. J Fungi (Basel) 2024; 10:344. [PMID: 38786699 PMCID: PMC11122123 DOI: 10.3390/jof10050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Fungal infections cause 1.7 million deaths annually, which can be attributed not only to fungus-specific factors, such as antifungal resistance and biofilm formation, but also to drug-related challenges. In this study, the potential of Amphotericin (AmB) loaded polymeric nanoparticles (AmB-NPs) combined with murine monoclonal antibodies (mAbs) (i.e., CC5 and DD11) was investigated as a strategy to overcome these challenges. To achieve this goal, AmB-NPs were prepared by nanoprecipitation using different polymers (polycaprolactone (PCL) and poly(D,L-lactide) (PLA)), followed by comprehensive characterization of their physicochemical properties and in vitro biological performance. The results revealed that AmB-loaded NPs exhibited no cytotoxicity toward mammalian cells (baby hamster kidney cells-BHK and human monocyte cells-THP-1). Conversely, both AmB-NPs demonstrated a cytotoxic effect against C. albicans, C. neoformans, and H. capsulatum throughout the entire evaluated range (from 10 µg/mL to 0.1 µg/mL), with a significant MIC of up to 0.031 µg/mL. Moreover, the combination of AmB-NPs with mAbs markedly intensified antifungal activity, resulting in a synergistic effect that was two to four times greater than that of AmB-NPs alone. These findings suggest that the combination of AmB-NPs with mAbs could be a promising new treatment for fungal infections that is potentially more effective and less toxic than current antifungal treatments.
Collapse
Affiliation(s)
- Carla Soares de Souza
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Victor Ropke da Cruz Lopes
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Gabriel Barcellos
- Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil (H.V.A.R.)
| | - Francisco Alexandrino-Junior
- Laboratório de Micro e Nanotecnologia, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-361, Brazil
| | - Patrícia Cristina da Costa Neves
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Beatriz Ferreira de Carvalho Patricio
- Laboratório de Inovação Farmacêutica e Tecnológica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro 22290-250, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil (H.V.A.R.)
- Laboratório de Micro e Nanotecnologia, Farmanguinhos, Fundação Oswaldro Cruz (Fiocruz), Rio de Janeiro 21040-361, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| | - Alexandre Bezerra Conde Figueiredo
- Laboratório de Tecnologia Imunológica (LATIM), Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (C.S.d.S.); (P.C.d.C.N.)
| |
Collapse
|
2
|
Usman F, Farooq M, Wani TA, Ahmad H, Javed I, Iqbal M, Sheikh FA, Siddique F, Zargar S, Sheikh S. Itraconazole Loaded Biosurfactin Micelles with Enhanced Antifungal Activity: Fabrication, Evaluation and Molecular Simulation. Antibiotics (Basel) 2023; 12:1550. [PMID: 37887251 PMCID: PMC10604259 DOI: 10.3390/antibiotics12101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Itraconazole (ITZ) is a broad-spectrum antifungal for superficial subcutaneous and systemic fungal infections. This study aimed to enhance the antifungal activity of ITZ using surfactin A (SA), a cyclic lipopeptide produced by the SA-producing Bacillus strain NH-100, possessing strong antifungal activity. SA was extracted, and ITZ-loaded SA micelles formulations were prepared via a single-pot rinsing method and characterized by particle size, zeta potential, and infrared spectroscopy. In vitro dissolution at pH 1.2, as well as hemolysis studies, was also carried out. The fabricated formulations were stable and non-spherical in shape, with an average size of about 179 nm, and FTIR spectra depicted no chemical interaction among formulation components. ITZ-loaded micelles showed decreased hemolysis activity in comparison to pure ITZ. The drug released followed the Korsmeyer-Peppas model, having R2 0.98 with the diffusion release mechanism. In an acidic buffer, drug release of all prepared formulations was in the range of 73-89% in 2 h. The molecular simulation showed the outstanding binding and stability profile of the ITZ-SA complex. The aromatic ring of the ITZ mediates a π-alkyl contact with a side chain in the SA. It can be concluded that ITZ-loaded micelles, owing to significant enhanced antifungal activity up to 6-fold due to the synergistic effect of SA, can be a promising drug delivery platform for delivery of poorly soluble ITZ.
Collapse
Affiliation(s)
- Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Mudassir Farooq
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hassan Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab, 1-Khayaban.e. Jinnah Road, Johar Town, Lahore 54000, Pakistan;
| | - Ibrahim Javed
- Center for Pharmaceutical Innovation, Clinical and Health Sciences, The University of South Australia, North Terrace, Adelaide 5000, Australia;
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan;
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan;
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Seema Zargar
- Department of Biochemistry, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Saleh Sheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan;
| |
Collapse
|
3
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Fioriti S, Brescini L, Pallotta F, Canovari B, Morroni G, Barchiesi F. Antifungal Combinations against Candida Species: From Bench to Bedside. J Fungi (Basel) 2022; 8:jof8101077. [PMID: 36294642 PMCID: PMC9605143 DOI: 10.3390/jof8101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Candida spp. is the major causative agent of fungal infections in hospitalized patients and the fourth most common cause of nosocomial bloodstream infection (BSI). The availability of standardized methods for testing the in vitro activity of antifungals along with the expanding of antifungal armamentarium, the rising of drug-resistance and the persistence of a high mortality rate in systemic candidiasis have led to an increased interest in combination therapy. Therefore, we aimed to review the scientific literature concerning the antifungal combinations against Candida. A literature search performed in PubMed yielded 92 studies published from 2000 to 2021: 29 articles referring to in vitro studies, six articles referring to either in vitro and in vivo (i.e., animal models) studies and 57 clinical articles. Pre-clinical studies involved 735 isolates of Candida species and 12 unique types of antifungal combination approaches including azoles plus echinocandins (19%), polyenes plus echinocandins (16%), polyenes plus azoles (13%), polyenes plus 5-flucytosine ([5-FC], 13%), azoles plus 5-FC (11%) and other types of combinations (28%). Results varied greatly, often being species-, drug- and methodology-dependent. Some combinatorial regimens exerted a synergistic effect against difficult-to-treat Candida species (i.e., azoles plus echinocandins; polyenes plus 5-FC) or they were more effective than monotherapy in prevent or reducing biofilm formation and in speeding the clearance of infected tissues (i.e., polyenes plus echinocandins). In 283 patients with documented Candida infections (>90% systemic candidiasis/BSI), an antifungal combination approach could be evaluated. Combinations included: azoles plus echinocandins (36%), 5-FC-combination therapies (24%), polyenes plus azoles (18%), polyenes plus echinocandins (16%) and other types of combination therapy (6%). Case reports describing combination therapies yielded favorable response in most cases, including difficult-to-treat fungal infections (i.e., endocarditis, osteoarticular infections, CNS infections) or difficult-to-treat fungal pathogens. The only randomized trial comparing amphotericin-B deoxycholate (AMB) plus FLU vs. AMB alone for treatment of BSI in nonneutropenic patients showed that the combination trended toward improved success and more-rapid clearance from the bloodstream. In summary, antifungal combinations against Candida have produced great interest in the past two decades. To establish whether this approach can become a reliable treatment option, additional in vitro and clinical data are warranted.
Collapse
Affiliation(s)
- Simona Fioriti
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Francesco Pallotta
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Disease Clinic, Azienda Ospedaliero Universitaria “Ospedali Riuniti”, 60126 Ancona, Italy
| | - Benedetta Canovari
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-6298; Fax: +39-071-220-6297
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
- Infectious Diseases Unit, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
| |
Collapse
|
5
|
Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T. Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J Biomol Struct Dyn 2022:1-14. [DOI: 10.1080/07391102.2022.2111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Halis Karatas
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Zülbiye Kökbudak
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| |
Collapse
|
6
|
Jafari M, Abolmaali SS, Borandeh S, Najafi H, Zareshahrabadi Z, Heidari R, Azarpira N, Zomorodian K, Tamaddon AM. Amphiphilic hyperbranched polyglycerol nanoarchitectures for Amphotericin B delivery in Candida infections. BIOMATERIALS ADVANCES 2022; 139:212996. [PMID: 35891600 DOI: 10.1016/j.bioadv.2022.212996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Although Amphotericin B (AMB) is considered the most effective anti-mycotic agent for treating Candida infections, its clinical use is limited due to its high toxicity. To address this issue, we developed cholesterol-based dendritic micelles of hyperbranched polyglycerol (HPG), including cholesterol-cored HPG (Chol-HPG) and cholesterol end-capped HPG (HPG@Chol), for AMB delivery. The findings suggested that the presence of cholesterol moieties could control AMB loading and release properties. Dendritic micelles inhibited AMB hemolysis and cytotoxicity in HEK 293 and RAW 264.7 cell lines while increasing antifungal activity against C. albicans biofilm formation. Furthermore, significantly lower levels of renal and liver toxicity biomarkers compared to Fungizone® ensured AMB-incorporated dendritic micelle biosafety, which was confirmed by histopathological evaluations. Overall, the Chol-HPG and HPG@Chol dendritic micelles may be a viable alternative to commercially available AMB formulations as well as an effective delivery system for other poorly soluble antifungal agents.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, Shiraz, PO Box 7193711351, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 713484-5794, Iran.
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran.
| |
Collapse
|
7
|
Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103079. [PMID: 35630555 PMCID: PMC9147969 DOI: 10.3390/molecules27103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Amphotericin B (AMB) is an antifungal drug used for serious fungal infections. However, AMB has adverse reactions such as nephrotoxicity, which limit the clinical application of AMB alone or in combination with other antifungal drugs. Nano or micro drug delivery systems (DDS) have been proven to be effective in reducing the toxic and side effects of drugs. Further, the combination of AMB with other compounds with antifungal activity, such as curcumin (CM), may enhance the synergistic effects. Herein, AMB and CM were co-loaded into porous poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) to prepare AMB/CM-PLGA MPs. The AMB/CM-PLGA MPs showed a remarkably reduced hemolysis (62.2 ± 0.6%) compared to AMB (80.9 ± 1.1%). The nephrotoxicity of AMB/CM-PLGA MPs is significantly lower than that of AMB. In vitro, AMB/CM-PLGA MPs had better inhibitory effects on the adhesion and biofilm formation of Candida albicans compared with AMB. Experiments on mice infected with C. albicans showed that AMB/CM-PLGA MPs have a better therapeutic effect than AMB in vivo. In summary, AMB/CM-PLGA MPs may be a novel and promising therapeutic candidate for fungal infection.
Collapse
|
8
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
9
|
Esson MM, Mecozzi S. Preparation, Characterization, and Formulation Optimization of Ionic-Liquid-in-Water Nanoemulsions toward Systemic Delivery of Amphotericin B. Mol Pharm 2020; 17:2221-2226. [PMID: 32343901 DOI: 10.1021/acs.molpharmaceut.9b00809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amphotericin B (AmB) is an antifungal agent that poses a challenge for intravenous drug delivery due to its hydrophobicity and severe side effects that are attributed to the self-aggregation of AmB in aqueous solution. To overcome this problem, we have rationally designed an ionic-liquid-in-water nanoemulsion drug delivery system that harnesses the unique properties of ionic liquids. The complex drug AmB serves as a model pharmaceutical agent to demonstrate the robustness of ionic-liquid-in-water nanoemulsions. High concentrations of AmB were solubilized in a new hydrophobic dicholinium-based ionic liquid. The absorption spectrum of AmB in an ionic liquid mixture and prepared nanoemulsion indicates AmB solubilization in the monomeric form. The hydrophobic ionic liquid exhibits high in vivo biocompatibility with zebrafish. The hemolytic activity of the AmB nanoemulsion was negligible, yet it maintained antifungal activity against Candida albicans. The preliminary results presented in this Communication indicate that ionic-liquid-in-water nanoemulsions may allow for the delivery of a variety of pharmaceuticals intravenously, broadening the scope of ionic liquids in the pharmaceutical sciences.
Collapse
Affiliation(s)
- Moira M Esson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sandro Mecozzi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B. Future Med Chem 2019; 11:2647-2662. [PMID: 31621420 DOI: 10.4155/fmc-2018-0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To encapsulate amphotericin B (AmB) with reduced toxicity and comparable activity. Results & methodology: The α-linolenic acid (ALA)-modified monomethoxy polyethylene glycol-g-PEI-g-ALA conjugate was employed to prepare AmB-loaded micelles (AmB-M). In vitro activity and release behavior of AmB-M were investigated. AmB-M enhanced AmB's water-solubility to 1.2 mg/ml, showing good storage stability. AmB-M could achieve a sustained and slow release of AmB, low hemolysis activity and negligible kidney toxicity when compared with commercial AmB injection. Antifungal activity and biofilm inhibition experiments confirmed that the antifungal activity of AmB-M against Candida albicans was similar to that of AmB injection. Conclusion: Monomethoxy polyethylene glycol-g-PEI-g-ALA micelles could be a preferable choice to treat systemic fungal infections as an efficient drug delivery system.
Collapse
|
11
|
Linolenic acid-modified methoxy poly (ethylene glycol)-oligochitosan conjugate micelles for encapsulation of amphotericin B. Carbohydr Polym 2019; 205:571-580. [DOI: 10.1016/j.carbpol.2018.10.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023]
|
12
|
Zhou F, Xu H, Song Z, Zhu L, Feng S, Feng R. α-Linolenic acid-modified pluronic 127-CS copolymeric micelles for the skin targeted delivery of amphotericin B. NEW J CHEM 2019. [DOI: 10.1039/c8nj03847c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an α-linolenic acid modified pluronic F127-block-chitosan (F127-(CS-LNA)2) copolymer was synthesized to prepare topical amphotericin B (AMB)-loaded micelles (AMB-M) via a dialysis technique.
Collapse
Affiliation(s)
- Feilong Zhou
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongmei Xu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Zhimei Song
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Li Zhu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Sijia Feng
- School of Basic Medical Sciences
- Dali University
- Dali 671000
- P. R. China
| | - Runliang Feng
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|