1
|
Dragar Č, Roškar R, Kocbek P. The Incorporated Drug Affects the Properties of Hydrophilic Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:949. [PMID: 38869574 PMCID: PMC11173976 DOI: 10.3390/nano14110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Hydrophilic nanofibers offer promising potential for the delivery of drugs with diverse characteristics. Yet, the effects of different drugs incorporated into these nanofibers on their properties remain poorly understood. In this study, we systematically explored how model drugs, namely ibuprofen, carvedilol, paracetamol, and metformin (hydrochloride), affect hydrophilic nanofibers composed of polyethylene oxide and poloxamer 188 in a 1:1 weight ratio. Our findings reveal that the drug affects the conductivity and viscosity of the polymer solution for electrospinning, leading to distinct changes in the morphology of electrospun products. Specifically, drugs with low solubility in ethanol, the chosen solvent for polymer solution preparation, led to the formation of continuous nanofibers with uniform diameters. Additionally, the lower solubility of metformin in ethanol resulted in particle appearance on the nanofiber surface. Furthermore, the incorporation of more hydrophilic drugs increased the surface hydrophilicity of nanofiber mats. However, variations in the physicochemical properties of the drugs did not affect the drug loading and drug entrapment efficiency. Our research also shows that drug properties do not notably affect the immediate release of drugs from nanofibers, highlighting the dominant role of the hydrophilic polymers used. This study emphasizes the importance of considering specific drug properties, such as solubility, hydrophilicity, and compatibility with the solvent used for electrospinning, when designing hydrophilic nanofibers for drug delivery. Such considerations are crucial for optimizing the properties of the drug delivery system, which is essential for achieving therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Robert Roškar
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Hobzova R, Sirc J, Shrestha K, Mudrova B, Bosakova Z, Slouf M, Munzarova M, Hrabeta J, Feglarova T, Cocarta AI. Multilayered Polyurethane/Poly(vinyl alcohol) Nanofibrous Mats for Local Topotecan Delivery as a Potential Retinoblastoma Treatment. Pharmaceutics 2023; 15:pharmaceutics15051398. [PMID: 37242640 DOI: 10.3390/pharmaceutics15051398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy.
Collapse
Affiliation(s)
- Radka Hobzova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Kusum Shrestha
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | - Barbora Mudrova
- Department of Analytical Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| | | | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tereza Feglarova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Ana-Irina Cocarta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague, Czech Republic
| |
Collapse
|
3
|
Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213124. [PMID: 36148709 DOI: 10.1016/j.bioadv.2022.213124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanofibers due to their unique properties such as high surface-to-volume ratio, porous structure, mechanical strength, flexibility and their resemblance to the extracellular matrix, have been researched extensively in the field of ocular drug delivery and tissue engineering. Further, different modifications considering the formulation and process parameters have been carried out to alter the drug release profile and its interaction with the surrounding biological environment. Electrospinning is the most commonly used technique for preparing nanofibers with industrial scalability. Advanced techniques such as co-axial electrospinning and combined system such as embedding nanoparticles in nanofiber provide an alternative approach to enhance the performance of the scaffold. Electrospun nanofibers offers a matrix like structure for cell regeneration. Nanofibers have been used for ocular delivery of various drugs like antibiotics, anti-inflammatory and various proteins. In addition, lens-coated medical devices provide new insights into the clinical use of nanofibers. Through fabricating the nanofibers researchers have overcome the issues of low bioavailability and compatibility with ocular tissue. Therefore, nanofibers have great potential in ocular drug delivery and tissue engineering and have the capacity to revolutionize these therapeutic areas in the field of ophthalmology. This review is mainly focused on the recent advances in the preparation of nanofibers and their applications in ocular drug delivery and tissue engineering. The authors have attempted to emphasize the processing challenges and future perspectives along with an overview of the safety and toxicity aspects of nanofibers.
Collapse
Affiliation(s)
- Darshana Sakpal
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India; SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Muthukrishnan L. An overview on electrospinning and its advancement toward hard and soft tissue engineering applications. Colloid Polym Sci 2022; 300:875-901. [PMID: 35765603 PMCID: PMC9226287 DOI: 10.1007/s00396-022-04997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
One of the emerging technologies of the recent times harboring nanotechnology to fabricate nanofibers for various biomedical and environmental applications are electrospinning (nanofiber technology). Their relative ease in use, simplicity, functionality and diversity has surpassed the pitfalls encountered with the conventional method of generating fibers. This review aims to provide an overview of electrospinning, principle, methods, feed materials, and applications toward tissue engineering. To begin with, evolution of electrospinning and its typical apparatus have been briefed. Simultaneously, discussion on the production of nanofibers with diversified feed materials such as polymers, small molecules, colloids, and nanoparticles and its transformation into a powerful technology has been dealt with. Further, highlights on the application of nanofibers in tissue engineering and the commercialized products developed using nanofiber technology have been summed up. With this rapidly emerging technology, there would be a great demand pertaining to scalability and environmental challenge toward tissue engineering applications.
Collapse
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu 600 077 India
| |
Collapse
|
5
|
Wang SF, Wu YC, Cheng YC, Hu WW. The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application. Polymers (Basel) 2021; 13:polym13111740. [PMID: 34073347 PMCID: PMC8198519 DOI: 10.3390/polym13111740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023] Open
Abstract
Composite electrospun fibers were fabricated to develop drug loaded scaffolds to promote bone tissue regeneration. Multi-wall carbon nanotubes (MWCNTs) were incorporated to polylactic acid (PLA) to strengthen electrospun nanofibers. To modulate drug release behavior, different ratios of hydrophilic polyethylene glycol (PEG) were added to composite fibers. Glass transition temperature (Tg) can be reduced by the incorporated PEG to enhance the ductility of the nanofibers. The SEM images and the MTT results demonstrated that composite fibers are suitable scaffolds for cell adhesion and proliferation. Dexamethasone (DEX), an osteogenic inducer, was loaded to PLA/MWCNT/PEG fibers. The surface element analysis performed by XPS showed that fluorine of DEX in pristine PLA fibers was much higher than those of the MWCNT-containing fibers, suggesting that the pristine PLA fibers mainly load DEX on their surfaces, whereas MWCNTs can adsorb DEX with evenly distribution in nanofibers. Drug release experiments demonstrated that the release profiles of DEX were manipulated by the ratio of PEG, and that the more PEG in the nanofibers, the faster DEX was released. When rat bone marrow stromal cells (rBMSCs) were seeded on these nanofibers, the Alizarin Red S staining and calcium quantification results demonstrated that loaded DEX were released to promote osteogenic differentiation of rBMSCs and facilitate mineralized tissue formation. These results indicated that the DEX-loaded PLA/MWCNT/PEG nanofibers not only enhanced mechanical strength, but also promoted osteogenesis of stem cells via the continuous release of DEX. The nanofibers should be a potential scaffold for bone tissue engineering application.
Collapse
Affiliation(s)
- Shih-Feng Wang
- Department of Urology, Cathay General Hospital, Taipei 10603, Taiwan;
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yun-Chung Wu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan;
| | - Yu-Che Cheng
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan
- Correspondence: (Y.-C.C.); (W.-W.H.); Tel.: +886-2-86461500 (ext. 2615) (Y.-C.C.); +886-3-4227151 (ext. 34246) (W.-W.H.); Fax: +886-2-26907963 (Y.-C.C.); +886-3-4252296 (W.-W.H.)
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City 32001, Taiwan;
- Correspondence: (Y.-C.C.); (W.-W.H.); Tel.: +886-2-86461500 (ext. 2615) (Y.-C.C.); +886-3-4227151 (ext. 34246) (W.-W.H.); Fax: +886-2-26907963 (Y.-C.C.); +886-3-4252296 (W.-W.H.)
| |
Collapse
|
6
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
7
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
8
|
A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8060673] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Electrospinning (ES) is a convenient and versatile method for the fabrication of nanofibers and has been utilized in many fields including pharmaceutical and biomedical applications. Conventional ES uses a needle spinneret for the generation of nanofibers and is associated with many limitations and drawbacks (i.e., needle clogging, limited production capacity, and low yield). Needleless electrospinning (NLES) has been proposed to overcome these problems. Within the last two decades (2004–2020), many research articles have been published reporting the use of NLES for the fabrication of polymeric nanofibers intended for drug delivery and biomedical tissue engineering applications. The objective of the present mini-review article is to elucidate the potential of NLES for designing such novel nanofibrous drug delivery systems and tissue engineering constructs. This paper also gives an overview of the key NLES approaches, including the most recently introduced NLES method: ultrasound-enhanced electrospinning (USES). The technologies underlying NLES systems and an evaluation of electrospun nanofibers are presented. Even though NLES is a promising approach for the industrial production of nanofibers, it is a multivariate process, and more research work is needed to elucidate its full potential and limitations.
Collapse
|
9
|
The effect of molecular weight and content of PEG on in vitro drug release of electrospun curcumin loaded PLA/PEG nanofibers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101554] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Dubey P, Barker SA, Craig DQM. Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution. ACS OMEGA 2020; 5:1003-1013. [PMID: 31984256 PMCID: PMC6977102 DOI: 10.1021/acsomega.9b02616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Despite widespread use as an immunosuppressant, the therapeutic efficacy of the undecapeptide cyclosporine A (CyA) is compromised when given by the oral route because of the innate hydrophobicity of the drug molecule, potentially leading to poor aqueous solubility and bioavailability. The aim of this study was to develop and characterize nanofibers based on the water-miscible polymer polyvinylpyrrolidone (PVP), incorporating CyA preloaded into polymeric surfactants so as to promote micelle formation on hydration; therefore, this approach represents the novel combination of three dissolution enhancement methodologies, namely solid dispersion technology, micellar systems, and nanofibers with enhanced surface area. The preparation of the nanofibers was performed in two steps. First, mixed micelles composed of the water-soluble vitamin E derivative d-α-tocopheryl poly(ethylene glycol) 1000 succinate and the amphiphilic triblock polymer Pluronic F127 (Poloxamer 407) were prepared. The micelles were characterized in terms of size, surface charge, drug loading, and encapsulation efficiency using transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and scanning electron and atomic force microscopy analysis. Nanofibers composed of PVP and the drug-loaded surfactant system were then prepared via electrospinning, with accompanying thermal, spectroscopic, and surface topological analysis. Dissolution studies indicated an extremely rapid dissolution profile for the fibers compared to the drug alone, while wettability studies also indicated a marked decrease in contact angle compared to the drug alone. Overall, the new approach appears to offer a viable means for considerably improving the dissolution of the hydrophobic peptide CyA, with associated implications for improved oral bioavailability.
Collapse
|
11
|
Hamedani Y, Chakraborty S, Sabarwal A, Pal S, Bhowmick S, Balan M. Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells. PLoS One 2020; 15:e0243837. [PMID: 33332399 PMCID: PMC7746163 DOI: 10.1371/journal.pone.0243837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Renal Cell Carcinoma (RCC) often becomes resistant to targeted therapies, and in addition, dose-dependent toxicities limit the effectiveness of therapeutic agents. Therefore, identifying novel drug delivery approaches to achieve optimal dosing of therapeutic agents can be beneficial in managing toxicities and to attain optimal therapeutic effects. Previously, we have demonstrated that Honokiol, a natural compound with potent anti-tumorigenic and anti-inflammatory effects, can induce cancer cell apoptosis and inhibit the growth of renal tumors in vivo. In cancer treatment, implant-based drug delivery systems can be used for gradual and sustained delivery of therapeutic agents like Honokiol to minimize systemic toxicity. Electrospun polymeric fibrous scaffolds are ideal candidates to be used as drug implants due to their favorable morphological properties such as high surface to volume ratio, flexibility and ease of fabrication. In this study, we fabricated Honokiol-loaded Poly(lactide-co-glycolide) (PLGA) electrospun scaffolds; and evaluated their structural characterization and biological activity. Proton nuclear magnetic resonance data proved the existence of Honokiol in the drug loaded polymeric scaffolds. The release kinetics showed that only 24% of the loaded Honokiol were released in 24hr, suggesting that sustained delivery of Honokiol is feasible. We calculated the cumulative concentration of the Honokiol released from the scaffold in 24hr; and the extent of renal cancer cell apoptosis induced with the released Honokiol is similar to an equivalent concentration of direct application of Honokiol. Also, Honokiol-loaded scaffolds placed directly in renal cell culture inhibited renal cancer cell proliferation and migration. Together, we demonstrate that Honokiol delivered through electrospun PLGA-based scaffolds is effective in inhibiting the growth of renal cancer cells; and our data necessitates further in vivo studies to explore the potential of sustained release of therapeutic agents-loaded electrospun scaffolds in the treatment of RCC and other cancer types.
Collapse
Affiliation(s)
- Yasaman Hamedani
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Sankha Bhowmick
- Department of Mechanical Engineering, Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, MA, United States of America
- * E-mail: (MB); (SB)
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail: (MB); (SB)
| |
Collapse
|
12
|
Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: comparison of drug release into liquid medium and to HEMA-based hydrogel model. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02469-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Waku T, Nishigaki S, Kitagawa Y, Koeda S, Kawabata K, Kunugi S, Kobori A, Tanaka N. Effect of the Hydrophilic-Hydrophobic Balance of Antigen-Loaded Peptide Nanofibers on Their Cellular Uptake, Cellular Toxicity, and Immune Stimulatory Properties. Int J Mol Sci 2019; 20:E3781. [PMID: 31382455 PMCID: PMC6696487 DOI: 10.3390/ijms20153781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Recently, nanofibers (NFs) formed from antigenic peptides conjugated to β-sheet-forming peptides have attracted much attention as a new generation of vaccines. However, studies describing how the hydrophilic-hydrophobic balance of NF components affects cellular interactions of NFs are limited. In this report, three different NFs were prepared by self-assembly of β-sheet-forming peptides conjugated with model antigenic peptides (SIINFEKL) from ovalbumin and hydrophilic oligo-ethylene glycol (EG) of differing chain lengths (6-, 12- and 24-mer) to investigate the effect of EG length of antigen-loaded NFs on their cellular uptake, cytotoxicity, and dendritic cell (DC)-stimulation ability. We used an immortal DC line, termed JAWS II, derived from bone marrow-derived DCs of a C57BL/6 p53-knockout mouse. The uptake of NFs, consisting of the EG 12-mer by DCs, was the most effective and activated DC without exhibiting significant cytotoxicity. Increasing the EG chain length significantly reduced cellular entry and DC activation by NFs. Conversely, shortening the EG chain enhanced DC activation but increased toxicity and impaired water-dispersibility, resulting in low cellular uptake. These results show that the interaction of antigen-loaded NFs with cells can be tuned by the EG length, which provides useful design guidelines for the development of effective NF-based vaccines.
Collapse
Affiliation(s)
- Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Saki Nishigaki
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuichi Kitagawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Sayaka Koeda
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazufumi Kawabata
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeru Kunugi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Naoki Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gosyokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
14
|
Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Hobzova R, Hampejsova Z, Cerna T, Hrabeta J, Venclikova K, Jedelska J, Bakowsky U, Bosakova Z, Lhotka M, Vaculin S, Franek M, Steinhart M, Kovarova J, Michalek J, Sirc J. Poly(d,l-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:982-993. [DOI: 10.1016/j.msec.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
|
16
|
Cui C, Wen M, Zhou F, Zhao Y, Yuan X. Target regulation of both VECs and VSMCs by dual-loading miRNA-126 and miRNA-145 in the bilayered electrospun membrane for small-diameter vascular regeneration. J Biomed Mater Res A 2018; 107:371-382. [PMID: 30461189 DOI: 10.1002/jbm.a.36548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022]
Abstract
Clinical utility of small-diameter vascular grafts is still challenging in blood vessel regeneration owing to thrombosis and intimal hyperplasia. To cope with the issues, modulation of gene expression via microRNAs (miRNAs) could be a feasible approach by rational regulating physiological activities of both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Our previous studies demonstrated that individually loaded miRNA-126 (miR-126) or miRNA-145 (miR-145) in the electrospun membranes showed the tendency to promote vascular regeneration. In this work, the bilayered electrospun graft in 1.5-mm diameter was developed by emulsion electrospinning to dual-load miR-126 and miR-145 for target regulation of both VECs and VSMCs, respectively. Accelerated release of miR-126 was achieved by introducing poly(ethylene glycol) in the inner electrospun poly(ethylene glycol)-b-poly(l-lactide-co-caprolactone) ultrafine fibrous membrane, reaching 61.3 ± 1.2% of the cumulative release in the initial 10 days, whereas the outer electrospun poly(l-lactide-co-glycolide) membrane composed of microfibers fulfilled prolonged release of miR-145 for about 56 days. In vivo tests suggested that dual-loading with miR-126 and miR-145 in the bilayered electrospun membranes could modulate both VECs and VSMCs for rapid endothelialization and hyperplasia inhibition as well. It is reasonably expected that dual target-delivery of miR-126 and miR-145 in the electrospun vascular grafts has effective potential for small-diameter vascular regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 371-382, 2019.
Collapse
Affiliation(s)
- Ce Cui
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Meiling Wen
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Plch J, Venclikova K, Janouskova O, Hrabeta J, Eckschlager T, Kopeckova K, Hampejsova Z, Bosakova Z, Sirc J, Hobzova R. Paclitaxel-Loaded Polylactide/Polyethylene Glycol Fibers with Long-Term Antitumor Activity as a Potential Drug Carrier for Local Chemotherapy. Macromol Biosci 2018; 18:e1800011. [DOI: 10.1002/mabi.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/01/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johana Plch
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Kristyna Venclikova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Katerina Kopeckova
- Department of Oncology; 2nd Medical Faculty; Charles University and Motol University Hospital; V uvalu 84 150 06 Prague 5 Czech Republic
| | - Zuzana Hampejsova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Hlavova 8 128 43 Prague 2 Czech Republic
| | - Zuzana Bosakova
- Department of Analytical Chemistry; Faculty of Science; Charles University; Hlavova 8 128 43 Prague 2 Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| | - Radka Hobzova
- Institute of Macromolecular Chemistry; Academy of Sciences; Heyrovsky Sq. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|