1
|
Mohan S, Li Y, Chu K, De La Paz L, Sperger D, Shi B, Foti C, Rucker V, Lai C. Integrative Salt Selection and Formulation Optimization: Perspectives of Disproportionation and Microenvironmental pH Modulation. Mol Pharm 2024; 21:2590-2605. [PMID: 38656981 DOI: 10.1021/acs.molpharmaceut.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report a novel utilization of a pH modifier as a disproportionation retardant in a tablet formulation. The drug molecule of interest has significant bioavailability challenges that require solubility enhancement. In addition to limited salt/cocrystal options, disproportionation of the potential salt(s) was identified as a substantial risk. Using a combination of Raman spectroscopy with chemometrics and quantitative X-ray diffraction in specially designed stress testing, we investigated the disproportionation phenomena. The learnings and insight drawn from crystallography drove the selection of the maleate form as the target API. Inspired by the fumarate form's unique stability and solubility characteristics, we used fumaric acid as the microenvironmental pH modulator. Proof-of-concept experiments with high-risk (HCl) and moderate-risk (maleate) scenarios confirmed the synergistic advantage of fumaric acid, which interacts with the freebase released by disproportionation to form a more soluble species. The resultant hemifumarate helps maintain the solubility at an elevated level. This work demonstrates an innovative technique to mediate the solubility drop during the "parachute" phase of drug absorption using compendial excipients, and this approach can potentially serve as an effective risk-mitigating strategy for salt disproportionation.
Collapse
Affiliation(s)
- Shikhar Mohan
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Yi Li
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kevin Chu
- Velexi Corporation, Burlingame, California 94010, United States
| | | | - Diana Sperger
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bing Shi
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chris Foti
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Victor Rucker
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chiajen Lai
- Gilead Sciences, Inc., Foster City, California 94404, United States
| |
Collapse
|
2
|
Barr KE, Ohnsorg ML, Liberman L, Corcoran LG, Sarode A, Nagapudi K, Feder CR, Bates FS, Reineke TM. Drug-Polymer Nanodroplet Formation and Morphology Drive Solubility Enhancement of GDC-0810. Bioconjug Chem 2024; 35:499-516. [PMID: 38546823 DOI: 10.1021/acs.bioconjchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 μg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.
Collapse
Affiliation(s)
- Kaylee E Barr
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Monica L Ohnsorg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apoorva Sarode
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christina R Feder
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Jia W, Yawman PD, Pandya KM, Sluga K, Ng T, Kou D, Nagapudi K, Luner PE, Zhu A, Zhang S, Hou HH. Assessing the Interrelationship of Microstructure, Properties, Drug Release Performance, and Preparation Process for Amorphous Solid Dispersions Via Noninvasive Imaging Analytics and Material Characterization. Pharm Res 2022; 39:3137-3154. [PMID: 35661085 DOI: 10.1007/s11095-022-03308-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this work is to evaluate the interrelationship of microstructure, properties, and dissolution performance for amorphous solid dispersions (ASDs) prepared using different methods. METHODS ASD of GDC-0810 (50% w/w) with HPMC-AS was prepared using methods of spray drying and co-precipitation via resonant acoustic mixing. Microstructure, particulate and bulk powder properties, and dissolution performance were characterized for GDC-0810 ASDs. In addition to application of typical physical characterization tools, we have applied X-Ray Microscopy (XRM) to assess the contribution of microstructure to the characteristics of ASDs and obtain additional quantification and understanding of the drug product intermediates and tablets. RESULTS Both methods of spray drying and co-precipitation produced single-phase ASDs. Distinct differences in microstructure, particle size distribution, specific surface area, bulk and tapped density, were observed between GDC-0810 spray dried dispersion (SDD) and co-precipitated amorphous dispersion (cPAD) materials. The cPAD powders prepared by the resonant acoustic mixing process demonstrated superior compactibility compared to the SDD, while the compressibility of the ASDs were comparable. Both SDD powder and tablets showed higher in vitro dissolution than those of cPAD powders. XRM calculated total solid external surface area (SA) normalized by calculated total solid volume (SV) shows a strong correlation with micro dissolution data. CONCLUSION Strong interrelationship of microstructure, physical properties, and dissolution performance was observed for GDC-0810 ASDs. XRM image-based analysis is a powerful tool to assess the contribution of microstructure to the characteristics of ASDs and provide mechanistic understanding of the interrelationship.
Collapse
Affiliation(s)
- Wei Jia
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Phillip D Yawman
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Keyur M Pandya
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kellie Sluga
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tania Ng
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dawen Kou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Paul E Luner
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA.,Triform Sciences LLC, Waterford, Connecticut, 06385, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
4
|
Haznar-Garbacz D, Hoc D, Garbacz G, Lachman M, Słomińska D, Romański M. Dissolution of a Biopharmaceutics Classification System Class II Free Acid from Immediate Release Tablets Containing a Microenvironmental pH Modulator: Comparison of a Biorelevant Bicarbonate Buffering System with Phosphate Buffers. AAPS PharmSciTech 2022; 23:203. [PMID: 35882674 DOI: 10.1208/s12249-022-02310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Poor water dissolution of active pharmaceutical ingredients (API) limits the rate of absorption from the gastrointestinal tract. Increasing the pH of a solid form microenvironment can enhance the dissolution of weakly acidic drugs, but data on this phenomenon in a physiologically relevant bicarbonate media are lacking. In this paper, we examined the effect of a microenvironmental pH modulator (Na2HPO4) on the dissolution of a Biopharmaceutics Classification System (BCS) class II free weak acid (ibuprofen) at biorelevant conditions, including an automatic bicarbonate buffering system, as well as in compendial (50 mM) and low-concentration (10 mM) phosphate buffers with no external pH control. The tablets of 200 mg ibuprofen with either Na2HPO4 (phosphate formulation, PF) or NaCl (reference formulation, RF) were manufactured using a compression method. In a pH 2 simulated gastric fluid, only PF produced a transient supersaturation of ibuprofen, dissolving a fourfold higher drug amount than RF. In a bicarbonate-buffered simulated intestinal fluid with a dynamically controlled pH (5.7, 7.2, and 5.8 to 7.7 gradient), PF dissolved more drug within 30 min than RF (p ≤ 0.019). Of note, the use of a 50 mM phosphate buffer pH 7.2 provided opposite results-RF dissolved the API much faster than PF. Moreover, 10 mM phosphate buffers of pH 5.6 and 7.2 could neither maintain a constant pH nor mimic the bicarbonate buffer performance. In conclusion, the use of a bicarbonate-buffered intestinal fluid, instead of phosphate buffers, may be essential in dissolution tests of BCS class II drugs combined with pH modulators.
Collapse
Affiliation(s)
- Dorota Haznar-Garbacz
- Department of Drug Form Technology, Wroclaw Medical University, 211a Borowska St., 50-556, Wrocław, Poland
| | - Dagmara Hoc
- Physiolution Polska, 74 Piłsudskiego St., 50-020, Wrocław, Poland
| | - Grzegorz Garbacz
- Physiolution GmbH, 49a Walther-Rathenau-Straße, 17489, Greifswald, Germany
| | - Marek Lachman
- Budenheim KG, 27 Rheinstraße, 55257, Budenheim, Germany
| | - Daria Słomińska
- Department of Pharmacology, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznań, Poland
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806, Poznań, Poland.
| |
Collapse
|
5
|
Pu YE, Menger R, Tong Z, Gaebele T. Development of an enhanced formulation to minimize pharmacokinetic variabilities of a weakly basic drug compound. Pharm Dev Technol 2022; 27:406-413. [PMID: 35502986 DOI: 10.1080/10837450.2022.2070206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Formulating poorly water soluble, weakly basic drugs with consistent exposure is often a challenge due to pH dependent solubility. When the oral formulation is exposed to different pH ranges in the gastrointestinal (GI) tract, drug precipitation or incomplete dissolution may occur resulting in decreased drug absorption and higher intra-and inter-patient pharmacokinetic variabilities.In the present study, a series of enhanced formulations containing organic acids and/or surfactants were developed and compared with conventional formulations with respect to their in vitro dissolution performance. The formulation containing 5% citric acid and 1% sodium lauryl sulfate (SLS) showed much less variations in dissolution performance at different pH conditions than a conventional formulation. The combination of citric acid and SLS demonstrated a synergistic effect as compared to use of citric acid alone or in combination with PEG4000 as a precipitation inhibitor.When compared with a conventional formulation and a spray-dried amorphous solid dispersion (ASD) formulation in a dog pharmacokinetics study, the enhanced formulation demonstrated the least AUC and Cmax variability between the two gastric pH-controlled groups. In conclusion, an enhanced formulation using a combination of organic acid and surfactant is recommended for weakly basic drug compounds to minimize drug pharmacokinetic variabilities in clinical studies.
Collapse
Affiliation(s)
- Yu Elaine Pu
- Oral Product Development, Global Pharmaceutical Sciences, Bristol-Myers Squibb
| | - Robert Menger
- Analytical Chemistry, Chemical Process Development, Bristol-Myers Squibb
| | - Zeen Tong
- Drug Metabolism and Pharmacokinetics, Nonclinical Disposition Assessment, Bristol-Myers Squibb
| | - Tracy Gaebele
- Material Science and Engineering, Global Pharmaceutical Sciences, Bristol-Myers Squibb
| |
Collapse
|
6
|
Chen YC, Yu J, Metcalfe C, De Bruyn T, Gelzleichter T, Malhi V, Perez-Moreno PD, Wang X. Latest generation estrogen receptor degraders for the treatment of hormone receptor-positive breast cancer. Expert Opin Investig Drugs 2021; 31:515-529. [PMID: 34694932 DOI: 10.1080/13543784.2021.1983542] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The selective estrogen receptor degrader (SERD) and full receptor antagonist provides an important therapeutic option for hormone receptor (HR)-positive breast cancer. Endocrine therapies include tamoxifen, a selective estrogen receptor modulator (SERM), that exhibits receptor agonist and antagonist activity, and aromatase inhibitors that block estrogen biosynthesis but which demonstrate acquired resistance. Fulvestrant, the only currently approved SERD, is limited by poor drug-like properties. A key focus for improving disease management has been development of oral SERDs with optimized target occupancy and potency and superior clinical efficacy. AREAS COVERED Using PubMed, clinicaltrials.gov, and congress websites, this review explored the preclinical development and clinical pharmacokinetics from early phase clinical studies (2015 or later) of novel oral SERDs, including giredestrant, amcenestrant, camizestrant, elacestrant, and rintodestrant. EXPERT OPINION Numerous oral SERDs are in clinical development, aiming to form the core endocrine therapy for HR-positive breast cancer. Through property- and structure-based drug design of estrogen receptor-binding, antagonism, degradation, anti-proliferation, and pharmacokinetic properties, these SERDs have distinct profiles which impact clinical dosing, efficacy, and safety. Assuming preliminary safety and activity data are confirmed in phase 3 trials, these promising agents could further improve the management, outcomes, and quality of life in HR-positive breast cancer.
Collapse
Affiliation(s)
- Ya-Chi Chen
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Jiajie Yu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Ciara Metcalfe
- Discovery Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Tom De Bruyn
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Thomas Gelzleichter
- Genentech Research and Early Development, Genentech, Inc., South San Francisco, CA, USA
| | - Vikram Malhi
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | | | - Xiaojing Wang
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
7
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
8
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
9
|
Fine-Shamir N, Dahan A. Methacrylate-Copolymer Eudragit EPO as a Solubility-Enabling Excipient for Anionic Drugs: Investigation of Drug Solubility, Intestinal Permeability, and Their Interplay. Mol Pharm 2019; 16:2884-2891. [PMID: 31120762 DOI: 10.1021/acs.molpharmaceut.9b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this work was to investigate the use of the dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) in oral solubility-enabling formulations for anionic lipophilic drugs, aiming to guide optional formulation design and maximize oral bioavailability. We have studied the solubility, the permeability, and their interplay, using the low-solubility nonsteroidal anti-inflammatory drug mefenamic acid as a model drug. Then, we studied the biorelevant solubility enhancement of mefenamic acid from EPO-based formulations throughout the gastrointestinal tract (GIT), using the pH-dilution dissolution method. EPO allowed a profound and linear solubility increase of mefenamic acid, from 10 μg/mL without EPO to 9.41 mg/mL in the presence of 7.5% EPO (∼940-fold; 37 °C); however, a concomitant decrease of the drug permeability was obtained, both in vitro and in vivo in rats, indicating a solubility-permeability trade-off. In the absence of an excipient, the unstirred water layer (UWL) adjacent to the GI membrane was found to hinder the permeability of the drug, accounting for this UWL effect and revealing that the true membrane permeability allowed good prediction of the solubility-permeability trade-off as a function of EPO level using a direct relationship between the increased solubility afforded by a given EPO level and the consequent decreased permeability. Biorelevant dissolution studies revealed that EPO levels of 0.05 and 0.1% were insufficient to dissolve mefenamic acid dose during the entire dissolution time course, whereas 0.5 and 1% EPO allowed complete solubility with no drug precipitation. In conclusion, EPO may serve as a potent solubility-enabling excipient for BCS class II/IV acidic drugs; however, it should be used carefully. It is prudent to use the minimal EPO amounts just sufficient to dissolve the drug dose throughout the GIT and not more than that. Excess amounts of EPO provide no solubility gain and cause further permeability loss, jeopardizing the overall success of the formulation. This work may help the formulator to hit the optimal solubility-permeability balance, maximizing the oral bioavailability afforded by the formulation.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| |
Collapse
|
10
|
Bermejo M, Kuminek G, Al-Gousous J, Ruiz-Picazo A, Tsume Y, Garcia-Arieta A, González-Alvarez I, Hens B, Amidon GE, Rodriguez-Hornedo N, Amidon GL, Mudie D. Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses. Pharmaceutics 2019; 11:pharmaceutics11030122. [PMID: 30884755 PMCID: PMC6471271 DOI: 10.3390/pharmaceutics11030122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 02/01/2023] Open
Abstract
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt—Using a combination of in vitro techniques and pharmacokinetic analysis. The non-bioequivalence (non-BE) tablet group achieved higher plasma Cmax and area under the curve (AUC) than the reference and BE tablets groups, with only one difference in tablet composition, which was the presence of calcium monohydrogen phosphate, an alkalinizing excipient, in the tablet core of the non-BE formulation. Concentration profiles determined using a gastrointestinal simulator (GIS) apparatus designed with 0.01 N hydrochloric acid and 34 mM sodium chloride as the gastric medium and fasted state simulated intestinal fluids (FaSSIF-v1) as the intestinal medium showed a faster rate and a higher extent of dissolution of the non-BE product compared to the BE and reference products. These in vitro profiles mirrored the fraction doses absorbed in vivo obtained from deconvoluted plasma concentration–time profiles. However, when sodium chloride was not included in the gastric medium and phosphate buffer without bile salts and phospholipids were used as the intestinal medium, the three products exhibited nearly identical concentration profiles. Microscopic examination of DKT salt dissolution in the gastric medium containing sodium chloride identified that when calcium phosphate was present, the DKT dissolved without conversion to the less soluble free acid, which was consistent with the higher drug exposure of the non-BE formulation. In the absence of calcium phosphate, however, dexketoprofen trometamol salt dissolution began with a nano-phase formation that grew to a liquid–liquid phase separation (LLPS) and formed the less soluble free acid crystals. This phenomenon was dependent on the salt/excipient concentrations and the presence of free acid crystals in the salt phase. This work demonstrated the importance of excipients and purity of salt phase on the evolution and rate of salt disproportionation pathways. Moreover, the presented data clearly showed the usefulness of the GIS apparatus as a discriminating tool that could highlight the differences in formulation behavior when utilizing physiologically-relevant media and experimental conditions in combination with microscopy imaging.
Collapse
Affiliation(s)
- Marival Bermejo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Gislaine Kuminek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jozef Al-Gousous
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany.
| | - Alejandro Ruiz-Picazo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Yasuhiro Tsume
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Merck and Co., Inc., 126 E Lincoln Ave, Rahway, NJ 07065, USA.
| | - Alfredo Garcia-Arieta
- Service on Pharmacokinetics and Generic Medicines, Division of Pharmacology and Clinical Evaluation, Department of Human Use Medicines, Spanish Agency for Medicines and Health Care Products, 28022 Madrid, Spain.
| | - Isabel González-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Bart Hens
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Deanna Mudie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
- Drug Product Development and Innovation, Lonza Pharma and Biotech, Bend, OR 97703, USA.
| |
Collapse
|
11
|
Oki J, Watanabe D, Uekusa T, Sugano K. Mechanism of Supersaturation Suppression in Dissolution Process of Acidic Drug Salt. Mol Pharm 2019; 16:1669-1677. [DOI: 10.1021/acs.molpharmaceut.9b00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jumpei Oki
- Molecular Pharmaceutics Lab, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Daiju Watanabe
- Molecular Pharmaceutics Lab, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Taiga Uekusa
- Molecular Pharmaceutics Lab, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
12
|
Hou HH, Rajesh A, Pandya KM, Lubach JW, Muliadi A, Yost E, Jia W, Nagapudi K. Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying. J Pharm Sci 2019; 108:870-879. [DOI: 10.1016/j.xphs.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023]
|
13
|
Application of a Novel 'Make and Test in Parallel' Strategy to Investigate the Effect of Formulation on the Pharmacokinetics of GDC-0810 in Healthy Subjects. Pharm Res 2018; 35:233. [PMID: 30324422 PMCID: PMC6208608 DOI: 10.1007/s11095-018-2516-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/02/2018] [Indexed: 11/07/2022]
Abstract
Purpose GDC-0810, administered orally, was used in Phase I and II clinical studies to treat estrogen receptor positive breast cancers. It contains N-methyl-D-glucamine (NMG) salt of GDC-0810 with 10% sodium lauryl sulfate (SLS) as a surfactant and 15% sodium bicarbonate (NaHCO3) as an alkalizing agent to aid dissolution. To improve the processability of the formulation and reduce potential mucosal irritation in future Phase III clinical studies, the salt form and the amount of excipient required further optimization. To achieve this, we employed a novel “Make and Test in Parallel” strategy that facilitated selecting formulation in a rapid timeframe. Methods RapidFACT®, a streamlined, data-driven drug product optimization platform was used to bridge Phase I/II and Phase III formulations of GDC-0810. Five prototype formulations, varying in either the form of active pharmaceutical ingredient and/or the levels of the excipients SLS and NaHCO3 were assessed. Uniquely, the specific compositions of formulations manufactured and dosed were selected in real-time from emerging clinical data. Results The study successfully identified a Phase III formulation with a reduced SLS content, which when administered following a low-fat meal, gave comparable pharmacokinetic exposure to the Phase I/II formulation administered under the same conditions. Conclusions Our novel ‘Make and Test in Parallel’ approach enabled optimization of GDC-0810 formulation in a time- and cost-efficient fashion.
Collapse
|
14
|
Li J, Tsinman K, Tsinman O, Wigman L. Using pH Gradient Dissolution with In-Situ Flux Measurement to Evaluate Bioavailability and DDI for Formulated Poorly Soluble Drug Products. AAPS PharmSciTech 2018; 19:2898-2907. [PMID: 30209787 DOI: 10.1208/s12249-018-1164-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/26/2018] [Indexed: 02/07/2023] Open
Abstract
This study described a pH-gradient dissolution method combined with flux measurements as an in vitro tool for assessing the risk of bioavailability reduction due to drug-drug interactions (DDI) caused by acid reducing agents (ARAs). The device incorporates absorption chambers into USP II dissolution vessels, with fiber optic UV-probes monitoring concentration in situ. Dosage forms of Genentech BCS class II drugs, GDC-0810, GDC-0941, and compound A, were tested by starting the dissolution in either pH 1.6 or pH 4.0 media then converting to FaSSIF after 30 min. GDC-0810 showed no significant difference in flux between the two conversion experiments. A supersaturation phase was observed for GDC-0941 in the pH 1.6 experiments after media conversion to FaSSIF; however, it did not appear to occur in the pH 4.0 experiment due to low drug solubility at pH 4.0, resulting in a 95% decrease in flux compared to pH 1.6 experiment. The extent of flux reduction and the total accumulated API mass in the absorption chamber agreed well with the 89% reduction in mean Cmax and the 82% reduction in mean AUC from dog PK study between animals treated with pentagastrin and famotidine. Testing of the compound A optimized formulation tablets showed a 25% reduction in flux and in vitro absorbed amount by changing pH 1.6 to 4.0, correlating well with the AUC decrease in clinical studies. Good correlation between in vitro data and in vivo PK data demonstrated the applicability of the method for formulators to develop drug products mitigating DDI from ARAs.
Collapse
|
15
|
Vo AQ, Feng X, Zhang J, Zhang F, Repka MA. Dual mechanism of microenvironmental pH modulation and foam melt extrusion to enhance performance of HPMCAS based amorphous solid dispersion. Int J Pharm 2018; 550:216-228. [PMID: 30142354 DOI: 10.1016/j.ijpharm.2018.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023]
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is an excellent polymeric carrier for melt extrusion amorphous solid dispersion. However, its pH-dependent solubility limits its application, especially for narrow absorption window drugs. The current study proposed a novel dual approach of foam extrusion and microenvironmental pH modulation to overcome this limitation. Sodium bicarbonate was used as a blowing agent and the remaining sodium carbonate acted as an internal pH modifier. Compared with conventional extrusion, foam extrusion dramatically lowered the extrudate physical strength (breaking force and hardness decreased by 20-fold; breaking energy and deformation energy decreased by >30-fold). Milling efficiency of foam extrudate was largely improved compared with that of conventional extrudates, demonstrating smaller particle size, larger specific surface area, and ability to pass through a smaller milling screen. The foam extrudate could generate a supersaturation concentration up to 8-fold higher than the solubility of the pure drug. It also significantly enhanced drug dissolution in a two-step biorelevant medium (p < 0.05). This novel approach improved both manufacturing processability and dissolution of HPMCAS-based solid dispersions.
Collapse
Affiliation(s)
- Anh Q Vo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Xin Feng
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Jiaxiang Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|