1
|
Wojtyłko M, Nowicka AB, Froelich A, Szybowicz M, Banaszek T, Tomczak D, Kuczko W, Wichniarek R, Budnik I, Jadach B, Kordyl O, Białek A, Krysztofiak J, Osmałek T, Lamprou DA. Characteristics of Hydrogels as a Coating for Microneedle Transdermal Delivery Systems with Agomelatine. Molecules 2025; 30:322. [PMID: 39860192 PMCID: PMC11767663 DOI: 10.3390/molecules30020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the stratum corneum barrier. For this purpose, the use of microneedles may increase the efficiency of administration. The aim of this study was to prepare an agomelatine-loaded hydrogel suitable for coating microneedles for the transdermal drug delivery of AGM. The optimized formulations were subjected to spectroscopic and rheological characterization and mechanical tests, as well as tested for release through an artificial membrane and permeation through human skin ex vivo. Both hydrogels were found to have suitable parameters for coating microneedles using the dip-coating method, including the stability of the substance at the process temperature, shear-thinning behavior, and appropriate textural parameters such as adhesion or hardness. Additionally, two formulations were tested for potential application to the skin alone because the gels showed suitable mechanical properties for the skin application. In this case, the ethanol gel was characterized by higher skin permeability and better spreadability. The information obtained in this study will allow the preparation of coated microneedles for the transdermal administration of agomelatine.
Collapse
Affiliation(s)
- Monika Wojtyłko
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (M.W.); (A.F.); (O.K.)
- Doctoral School, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Ariadna B. Nowicka
- Institute of Materials Research and Quantum Engineering, The Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznań, Poland; (A.B.N.); (M.S.)
| | - Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (M.W.); (A.F.); (O.K.)
| | - Mirosław Szybowicz
- Institute of Materials Research and Quantum Engineering, The Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznań, Poland; (A.B.N.); (M.S.)
| | - Tobiasz Banaszek
- Institute of Materials Research and Quantum Engineering, The Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznań, Poland; (A.B.N.); (M.S.)
| | - Dorota Tomczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 4 Berdychowo Street, 60-965 Poznań, Poland;
| | - Wiesław Kuczko
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznań, Poland; (W.K.)
| | - Radosław Wichniarek
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznań, Poland; (W.K.)
| | - Irena Budnik
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (A.B.); (J.K.)
| | - Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Oliwia Kordyl
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (M.W.); (A.F.); (O.K.)
| | - Antoni Białek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (A.B.); (J.K.)
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland
| | - Julia Krysztofiak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (A.B.); (J.K.)
- Student’s Research Group of Pharmaceutical Technology, The Student Scientific Society of Poznan University of Medical Sciences, 5 Rokietnicka Street, 60-806 Poznań, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland (A.B.); (J.K.)
| | | |
Collapse
|
2
|
Zhao X, Guo C, Zhang H, Yu X, Zhu X, Du G, Tian J, Liu W, Song T, Chen X, Guo W. 20-Week intramuscular toxicity study of rotigotine behenate extended-release microspheres for injection via intramuscular injection in cynomolgus monkeys. Food Chem Toxicol 2024; 190:114786. [PMID: 38849048 DOI: 10.1016/j.fct.2024.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Continuous dopaminergic stimulation (CDS) has become an important strategy for the development of drugs to treat Parkinson's disease (PD). Rotigotine behenate extended-release microspheres (RBEM) for injection represents a new treatment regime for CDS and is being applied for clinical trial. Our study in cynomolgus monkeys was a 20-week repeat dose toxicity investigation with RBEM at dosages of 90, 180, 360, with a 12-week recovery period. The results observed some irritations in the application site and surrounding tissues in Placebo microspheres and each dose of RBEM, was accompanied with increased white blood count and fibrinogen. RBEM-treated monkeys were additionally noted with a pharmacological action-related decrease in prolactin. These findings showed certain reversibility after the 12-week recovery phase. No clear sex difference was noted in the plasma exposure to rotigotine. The exposure generally increased in a dose-proportional manner. In summary, major toxicological effects are associated with the dopamine agonist-related properties of rotigotine, and the removal of foreign bodies caused by p oly (lactide-co-glycolide) (PLGA)and sodium carboxymethyl cellulose (SCMC), and the no-observed-adverse-effect-level (NOAEL) was 360 mg/kg.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Chunmin Guo
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Hong Zhang
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Xin Yu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China.
| | - Xiaoyin Zhu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Guagnying Du
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Jingwei Tian
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Wanhui Liu
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong, 264003, PR China
| | - Tao Song
- Luye Pharmaceutical Co., Ltd. (Luye Pharma), Yantai, Shandong, 264003, PR China
| | - Xiaobo Chen
- WestChina-Frontier PharmaTech Co. (WCFP) & National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, Sichuan, 610041, PR China
| | - Wei Guo
- WestChina-Frontier PharmaTech Co. (WCFP) & National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
3
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Zhang H, Yang Z, Wu D, Hao B, Liu Y, Wang X, Pu W, Yi Y, Shang R, Wang S. The Effect of Polymer Blends on the In Vitro Release/Degradation and Pharmacokinetics of Moxidectin-Loaded PLGA Microspheres. Int J Mol Sci 2023; 24:14729. [PMID: 37834176 PMCID: PMC10573114 DOI: 10.3390/ijms241914729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
To investigate the effect of polymer blends on the in vitro release/degradation and pharmacokinetics of moxidectin-loaded PLGA microspheres (MOX-MS), four formulations (F1, F2, F3 and F4) were prepared using the O/W emulsion solvent evaporation method by blending high (75/25, 75 kDa) and low (50/50, 23 kDa) molecular weight PLGA with different ratios. The addition of low-molecular-weight PLGA did not change the release mechanism of microspheres, but sped up the drug release of microspheres and drastically shortened the lag phase. The in vitro degradation results show that the release of microspheres consisted of a combination of pore diffusion and erosion, and especially autocatalysis played an important role in this process. Furthermore, an accelerated release method was also developed to reduce the period for drug release testing within one month. The pharmacokinetic results demonstrated that MOX-MS could be released for at least 60 days with only a slight blood drug concentration fluctuation. In particular, F3 displayed the highest AUC and plasma concentration (AUC0-t = 596.53 ng/mL·d, Cave (day 30-day 60) = 8.84 ng/mL), making it the optimal formulation. Overall, these results indicate that using polymer blends could easily adjust hydrophobic drug release from microspheres and notably reduce the lag phase of microspheres.
Collapse
Affiliation(s)
- Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Yunpeng Yi
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China; (H.Z.); (Z.Y.); (D.W.); (B.H.); (Y.L.); (X.W.); (W.P.); (Y.Y.)
| |
Collapse
|
5
|
Gul M, Shah FA, Sahar NU, Malik I, Din FU, Khan SA, Aman W, Choi HI, Lim CW, Noh HY, Noh JS, Zeb A, Kim JK. Formulation optimization, in vitro and in vivo evaluation of agomelatine-loaded nanostructured lipid carriers for augmented antidepressant effects. Colloids Surf B Biointerfaces 2022; 216:112537. [PMID: 35561634 DOI: 10.1016/j.colsurfb.2022.112537] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/04/2023]
Abstract
The present study was intended to prepare and optimize agomelatine-loaded nanostructured lipid carriers (AGM-NLCs) for augmented in vivo antidepressant potential. AGM-NLCs were optimized on several parameters including cumulative hydrophilic-lipophilic balance of surfactants, proportions of solid and liquid lipids, total amounts of drug and surfactants. AGM-NLCs were assessed for their physicochemical properties, in vitro AGM release and in vivo antidepressant effects in mice model. The optimized AGM-NLCs demonstrated spherical morphology with average particle size of 99.8 ± 2.6 nm, PDI of 0.142 ± 0.017, zeta potential of - 23.2 ± 1.2 mV and entrapment efficiency of 97.1 ± 2.1%. Thermal and crystallinity studies depict amorphous nature of AGM after its incorporation into NLCs. AGM-NLCs exhibit a sustained drug release profile after initial 2 h. Mice treated with AGM-NLCs exhibited reduced immobility time in behavioral analysis. Furthermore, cresyl violet staining demonstrated an improved neuronal morphology and survival in AGM-NLCs group. The concentrations and the expression of inflammatory markers (TNF-α and COX-2) in mice brain were significantly reduced by AGM-NLCs. Taken together, therapeutic effectiveness of AGM was markedly augmented in AGM-NLCs and thereby they could be promising nanocarriers for the effective delivery of antidepressants to brain.
Collapse
Affiliation(s)
- Maleeha Gul
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us Sahar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
6
|
Gou J, Wang S, Li X, Yin T, He H, Zhang Y, Tang X, Xiao W, Wang Z. Reduced In vivo burst release of ginkgolide B microcrystals achieved by polymeric H+ depot. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Han B, Tang H, Liang Q, Zhu M, Xie Y, Chen J, Li Q, Jia J, Li Y, Ren Z, Cong D, Yu X, Sui D, Pei J. Preparation of long-acting microspheres loaded with octreotide for the treatment of portal hypertensive. Drug Deliv 2021; 28:719-732. [PMID: 33825592 PMCID: PMC8032347 DOI: 10.1080/10717544.2021.1898702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to optimize the preparation method of injectable Octreotide microspheres. To explore the correlation between the solvent system and the general properties of microspheres to reduce burst release and enable them to be used for portal hypertension. Octreotide microspheres were prepared by modified double emulsion solution evaporation method after optimizing preparation conditions. The results showed that Octreotide microspheres had a particle size of 57.48 ± 15.24 μm, and the initial release was significantly reduced. In vitro release and in vivo pharmacokinetic data indicated that Octreotide was released stably within 1200 h. The effects on portal vein pressure, liver tissue morphology and other related indexes were observed after administration. As obvious results, injection of Octreotide microspheres could significantly reduce portal vein pressure and reduce the portal vein lumen area in experimental cirrhotic portal hypertensive rats. The optimized Octreotide PLGA microsphere preparation has been proved to have a good effect on PHT in vivo after detecting aminotransferase (AST) and alanine aminotransferase (ALT) activity, liver tissue hydroxyproline (Hyp) content, serum and liver tissue malondialdehyde (MDA) levels, plasma prostacyclin (PGI2) levels, and liver tissue tumor necrosis factor (TNFα) content. In addition, serum and liver tissue superoxide dismutase (SOD) activity and liver tissue glutathione (GSH) content, plasma thromboxane (TXA2), serum nitric oxide (NO), liver tissue nitric oxide synthase (NOS), and plasma and liver tissue endothelin (ET) were significantly increased.
Collapse
Affiliation(s)
- Bing Han
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Huan Tang
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Qiming Liang
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Ming Zhu
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Yizhuo Xie
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Jinglin Chen
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Qianwen Li
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Juan Jia
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Yan Li
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Zhihui Ren
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Dengli Cong
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Xiaofeng Yu
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Dayun Sui
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| | - Jin Pei
- School of Pharmaceutical sciences, Jilin University, Changchun, 130021, P.R. China
| |
Collapse
|
8
|
Lamba M, Goswami A, Bandyopadhyay A. A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chem Commun (Camb) 2021; 57:827-839. [DOI: 10.1039/d0cc06557a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A schematic representation of various judicious approaches for the synthesis of BPA and BSH modified compounds for effective BNCT.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry
- Indian Institute of Technology
- Birla Farms
- Ropar
- India
| | - Avijit Goswami
- Department of Chemistry
- Indian Institute of Technology
- Birla Farms
- Ropar
- India
| | | |
Collapse
|
9
|
Barcia E, Sandoval V, Fernandez-Carballido A, Negro S. Flunarizine-loaded microparticles for the prophylaxis of migraine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhang C, Yang L, Wan F, Bera H, Cun D, Rantanen J, Yang M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 2020; 585:119441. [PMID: 32442645 DOI: 10.1016/j.ijpharm.2020.119441] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Adopting the Quality by Design (QbD) approach in the drug development process has transformed from "nice-to-do" into a crucial and required part of the development, ensuring the quality of pharmaceutical products throughout their whole life cycles. This review is discussing the implementation of the QbD thinking into the production of long-acting injectable (LAI) PLGA/PLA-based microspheres for the therapeutic peptide and protein drug delivery. Various key elements of the QbD approaches are initially elaborated using Bydureon®, a commercial product of LAI PLGA/PLA-based microspheres, as a classical example. Subsequently, the factors influencing the release patterns and the stability of the peptide and protein drugs are discussed. This is followed by a summary of the state-of-the-art of manufacturing LAI PLGA/PLA-based microspheres and the related critical process parameters (CPPs). Finally, a landscape of generic product development of LAI PLGA/PLA-based microspheres is reviewed including some major challenges in the field.
Collapse
Affiliation(s)
- Chengqian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Liang Yang
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Company, Ltd, Huanghe Road 226, 050035 Shijiazhuang, China
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Effect of Formulation Variables on the Performance of Doxycycline-Loaded PLA Microsphere. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Qi P, Bu R, Zhang H, Yin J, Chen J, Zhang A, Gou J, Yin T, Zhang Y, He H, Wang P, Tang X, Wang Y. Goserelin Acetate Loaded Poloxamer Hydrogel in PLGA Microspheres: Core–Shell Di-Depot Intramuscular Sustained Release Delivery System. Mol Pharm 2019; 16:3502-3513. [PMID: 31251642 DOI: 10.1021/acs.molpharmaceut.9b00344] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | | | | |
Collapse
|