1
|
González-Garcinuño Á, Tabernero A, Nieto C, Martín Del Valle E, Kenjeres S. Multiphysics simulation of liposome release from hydrogels for cavity filling following patient-specific breast tumor surgery. Eur J Pharm Sci 2025; 204:106966. [PMID: 39571629 DOI: 10.1016/j.ejps.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Several studies have recommended the use of hydrogels for localized targeted delivery of chemotherapeutic drugs following tumor removal surgery. This approach aims to both fill the cavity and prevent cancer recurrence. The use of Multiphysics-based simulation emerges as a valuable strategy for minimizing experimental work, providing detailed insights into how drug release occurs in the tissue, and enabling the optimization of the design. In this study, we introduced a mathematical model, utilizing experimental data, to investigate the transport of liposomes carrying MZ1 from a thermosensitive hydrogel and their impact on the viability of breast cancer cells. The proposed comprehensive model considers not just the transport within the interstitial tissue, represented as a porous medium, but also the uptake by cells and its influence on cell viability, along with the potential lymphatic drainage. The six real patient-specific tumor shapes extracted from MRI scans were used to investigate how the size and form of the tumor can modify the transport pattern. The computational results revealed that the concentration of liposomes in the tissue is significantly influenced by their release from the hydrogel, which proved to be the limiting step. Liposome concentrations of approximately 0.1 % weight were found to be sufficient in ensuring minimal cell survival in the vicinity of the tumor.
Collapse
Affiliation(s)
- Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain; Institute for Biomedical Research in Salamanca (IBSAL), Paseo de San Vicente 87, 37007, Salamanca, Spain.
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain; Institute for Biomedical Research in Salamanca (IBSAL), Paseo de San Vicente 87, 37007, Salamanca, Spain
| | - Celia Nieto
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain; Institute for Biomedical Research in Salamanca (IBSAL), Paseo de San Vicente 87, 37007, Salamanca, Spain
| | - Eva Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Plaza Los Caídos s/n, 37008 Salamanca, Spain; Institute for Biomedical Research in Salamanca (IBSAL), Paseo de San Vicente 87, 37007, Salamanca, Spain
| | - Sasa Kenjeres
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
2
|
Wang H, de Lucio M, Hu T, Leng Y, Gomez H. A MPET 2-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 260:108543. [PMID: 39671822 DOI: 10.1016/j.cmpb.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue. METHODS We propose the MPET2-mPBPK model to address this issue. This multiscale model couples the MPET2 model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET2 model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system. RESULTS We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection. CONCLUSION The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos NM 87544, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Li C, Zhong X, Rahimi E, Ardekani AM. A multi-scale numerical study of monoclonal antibodies uptake by initial lymphatics after subcutaneous injection. Int J Pharm 2024; 661:124419. [PMID: 38972522 DOI: 10.1016/j.ijpharm.2024.124419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
This paper studies the transport of monoclonal antibodies through skin tissue and initial lymphatics, which impacts the pharmacokinetics of monoclonal antibodies. Our model integrates a macroscale representation of the entire skin tissue with a mesoscale model that focuses on the papillary dermis layer. Our results indicate that it takes hours for the drugs to disperse from the injection site to the papillary dermis before entering the initial lymphatics. Additionally, we observe an inhomogeneous drug distribution in the interstitial space of the papillary dermis, with higher drug concentrations near initial lymphatics and lower concentrations near blood capillaries. To validate our model, we compare our numerical simulation results with experimental data, finding a good alignment. Our parametric studies on the drug molecule properties and injection parameters suggest that a higher diffusion coefficient increases the transport and uptake rate while binding slows down these processes. Furthermore, shallower injection depths lead to faster lymphatic uptake, whereas the size of the injection plume has a minor effect on the uptake rate. These findings advance our understanding of drug transport and lymphatic absorption after subcutaneous injection, offering valuable insights for optimizing drug delivery strategies and the design of biotherapeutics.
Collapse
Affiliation(s)
- Chenji Li
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
4
|
Mathias N, Huille S, Picci M, Mahoney RP, Pettis RJ, Case B, Helk B, Kang D, Shah R, Ma J, Bhattacharya D, Krishnamachari Y, Doucet D, Maksimovikj N, Babaee S, Garidel P, Esfandiary R, Gandhi R. Towards more tolerable subcutaneous administration: Review of contributing factors for improving combination product design. Adv Drug Deliv Rev 2024; 209:115301. [PMID: 38570141 DOI: 10.1016/j.addr.2024.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.
Collapse
Affiliation(s)
- Neil Mathias
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| | - Sylvain Huille
- Sanofi, 13 quai Jules Guesde, 94400 Vitry-Sur-Seine, France.
| | - Marie Picci
- Novartis Pharma AG, Fabrikstrasse 4, CH-4056 Basel, Switzerland
| | - Robert P Mahoney
- Comera Life Sciences, 12 Gill St, Suite 4650, Woburn, MA 01801 USA
| | - Ronald J Pettis
- Becton-Dickinson, 21 Davis Drive, Research Triangle Park, NC 27513 USA
| | - Brian Case
- KORU Medical Systems, 100 Corporate Dr, Mahwah, NJ 07430 USA
| | - Bernhard Helk
- Novartis Pharma AG, Werk Klybeck, WKL-681.4.42, CH-4057 Basel, Switzerland
| | - David Kang
- Halozyme Therapeutics, Inc., 12390 El Camino Real, San Diego, CA 92130 USA
| | - Ronak Shah
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| | - Junchi Ma
- Johnson & Johnson Innovative Medicine, 200 Great Valley Pkwy, Malvern, PA 19355 USA
| | | | | | - Dany Doucet
- GSK, 1250 South Collegeville Road, Collegeville, PA 19426 USA
| | | | - Sahab Babaee
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065 USA
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach/Riss, Germany
| | | | - Rajesh Gandhi
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| |
Collapse
|
5
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
6
|
Corpstein CD, Hou P, Park K, Li T. Multiphysics Simulation of Local Transport and Absorption Coupled with Pharmacokinetic Modeling of Systemic Exposure of Subcutaneously Injected Drug Solution. Pharm Res 2023; 40:2873-2886. [PMID: 37344601 DOI: 10.1007/s11095-023-03546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Subcutaneous (SC) injectables have become more acceptable and feasible for administration of biologics and small molecules. However, efficient development of these products is limited to costly and time-consuming techniques, partially because absorption mechanisms and kinetics at the local site of injection remain poorly understood. OBJECTIVE To bridge formulation critical quality attributes (CQA) of injectables with local physiological conditions to predict systemic exposure of these products. METHODOLOGY We have previously developed a multiscale, multiphysics computational model to simulate lymphatic absorption and whole-body pharmacokinetics of monoclonal antibodies. The same simulation framework was applied in this study to compute the capillary absorption of solubilized small molecule drugs that are injected subcutaneously. Sensitivity analyses were conducted to probe the impact by key simulation parameters on the local and systemic exposures. RESULTS This framework was capable of determining which parameters had the biggest impact on small molecule absorption in the SC. Particularly, membrane permeability of a drug was found to have the biggest impact on drug absorption kinetics, followed by capillary density and drug diffusivity. CONCLUSION Our modelling framework proved feasible in predicting local transport and systemic absorption from the injection site of small molecules. Understanding the effect of these properties and how to model them may help to greatly expedite the development process.
Collapse
Affiliation(s)
- Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Peng Hou
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, West Lafayette, Indiana, IN, 47907, USA.
| |
Collapse
|
7
|
Wang H, Hu T, Leng Y, de Lucio M, Gomez H. MPET 2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection. Drug Deliv 2023; 30:2163003. [PMID: 36625437 PMCID: PMC9851243 DOI: 10.1080/10717544.2022.2163003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,CONTACT Hao Wang School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Pepin XJH, Grant I, Wood JM. SubQ-Sim: A Subcutaneous Physiologically Based Biopharmaceutics Model. Part 1: The Injection and System Parameters. Pharm Res 2023; 40:2195-2214. [PMID: 37634241 PMCID: PMC10547635 DOI: 10.1007/s11095-023-03567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To construct a detailed mechanistic and physiologically based biopharmaceutics model capable of predicting 1) device-formulation-tissue interaction during the injection process and 2) binding, degradation, local distribution, diffusion, and drug absorption, following subcutaneous injection. This paper is part of a series and focusses on the first aspect. METHODS A mathematical model, SubQ-Sim, was developed incorporating the details of the various substructures within the subcutaneous environment together with the calculation of dynamic drug disposition towards the lymph ducts and venous capillaries. Literature was searched to derive key model parameters in healthy and diseased subjects. External factors such as body temperature, exercise, body position, food or stress provide a means to calculate the impact of "life events" on the pharmacokinetics of subcutaneously administered drugs. RESULTS The model predicts the tissue backpressure time profile during the injection as a function of injection rate, volume injected, solution viscosity, and interstitial fluid viscosity. The shape of the depot and the concentrations of the formulation and proteins in the depot are described. The model enables prediction of formulation backflow following premature needle removal and the resulting formulation losses. Finally, the effect of disease (type 2 diabetes) or the presence of recombinant human hyaluronidase in the formulation on the injection pressure, are explored. CONCLUSIONS This novel model can successfully predict tissue back pressure, depot dimensions, drug and protein concentration and formulation losses due to incorrect injection, which are all important starting conditions for predicting drug absorption from a subcutaneous dose. The next article will describe the absorption model and validation against clinical data.
Collapse
Affiliation(s)
| | - Iain Grant
- Innovation Strategy & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK.
| | - J Matthew Wood
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
9
|
Corpstein CD, Li T. A Perspective on Model-Informed IVIVC for Development of Subcutaneous Injectables. Pharm Res 2023; 40:1633-1639. [PMID: 37523013 DOI: 10.1007/s11095-023-03572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Subcutaneously administered drugs are growing in popularity for both large and small molecule drugs. However, development of these systems - particularly generics - is slowed due to a lack of formal guidance regarding preclinical testing and in vitro - in vivo correlations (IVIVC). Many of these methods, while appropriate for oral drugs, may not be optimized for the complex injection site physiologies, and release rate and absorption mechanisms of subcutaneous drugs. Current limitations for formulation design and IVIVC can be supported by implementing mechanistic, computational methods. These methods can help to inform drug development by identifying key drug and formulation attributes, and their effects on drug release rates. This perspective, therefore, addresses current guidelines in place for oral IVIVC development, how they may differ for subcutaneously administered compounds, and how modeling and simulation can be implemented to inform design of these products. As such, integration of modeling and simulation with current IVIVC systems can help in driving the development of subcutaneous injectables.
Collapse
Affiliation(s)
- Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
10
|
Di J, Hou P, Corpstein CD, Wu K, Xu Y, Li T. Multiphysics modeling and simulation of local transport and absorption kinetics of intramuscularly injected lipids nanoparticles. J Control Release 2023; 359:S0168-3659(23)00369-3. [PMID: 37295730 DOI: 10.1016/j.jconrel.2023.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Recent clinical applications of mRNA vaccines highlight the critical role of drug delivery, especially when using lipid nanoparticles (LNPs) as the carrier for genetic payloads. However, kinetic and transport mechanisms for locally injected LNPs, such as lymphatic or cellular uptake and drug release, remain poorly understood. Herein, we developed a bottom-up multiphysics computational model to simulate the injection and absorption processes of LNPs in muscular tissues. Our purpose was to seek underlying connections between formulation attributes and local exposure kinetics of LNPs and the delivered drug. We were also interested in modeling the absorption kinetics from the local injection site to the systemic circulation. In our model, the tissue was treated as the homogeneous, poroelastic medium in which vascular and lymphatic vessel densities are considered. Tissue deformation and interstitial fluid flow (modeled using Darcy's Law) were also implemented. Transport of LNPs was described based on diffusion and advection; local disintegration and cellular uptake were also integrated. Sensitivity analyses of LNP and drug properties and tissue attributes were conducted using the simulation model. It was found that intrinsic tissue porosity and lymphatic vessel density affect the local transport kinetics; diffusivity, lymphatic permeability, and intracellular update kinetics also play critical roles. Simulated results were commensurate with experimental observations. This study could shed light on the development of LNP formulations and enable further development of whole-body pharmacokinetic models.
Collapse
Affiliation(s)
- Jiaxing Di
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | - Peng Hou
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | | | - Kangzeng Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; School of Pharmacy, Dali University, Dali Bai Autonomous Prefecture, Dali, China.
| | - Tonglei Li
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA.
| |
Collapse
|
11
|
Lymphatic uptake of biotherapeutics through a 3D hybrid discrete-continuum vessel network in the skin tissue. J Control Release 2023; 354:869-888. [PMID: 36634711 DOI: 10.1016/j.jconrel.2022.12.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Subcutaneous administration is a common approach for the delivery of biotherapeutics, which is achieved mainly through the absorption across lymphatic vessels. In this paper, the drug transport and lymphatic uptake through a three-dimensional hybrid discrete-continuum vessel network in the skin tissue are investigated through high-fidelity numerical simulations. We find that the local lymphatic uptake through the explicit vessels significantly affects macroscopic drug absorption. The diffusion of drug solute through the explicit vessel network affects the lymphatic uptake after the injection. This effect, however, cannot be captured using previously developed continuum models. The lymphatic uptake is dominated by the convection due to lymphatic drainage driven by the pressure difference, which is rarely studied in experiments and simulations. Furthermore, the effects of injection volume and depth on the lymphatic uptake are investigated in a multi-layered domain. We find that the injection volume significantly affects the rate of lymphatic uptake through the heterogeneous vessel network, while the injection depth has little influence, which is consistent with the experimental results. At last, the binding and metabolism of drug molecules are studied to bridge the simulations to the drug clearance experients. We provide a new approach to study the diffusion and convection of drug molecules into the lymphatic system through the hybrid vessel network.
Collapse
|
12
|
Zambrana PN, Hou P, Hammell DC, Li T, Stinchcomb AL. Understanding Formulation and Temperature Effects on Dermal Transport Kinetics by IVPT and Multiphysics Simulation. Pharm Res 2022; 39:893-905. [PMID: 35578064 DOI: 10.1007/s11095-022-03283-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE It is often unclear how complex topical product formulation factors influence the transport kinetics through skin tissue layers, because of multiple confounding attributes. Environmental factors such as temperature effect are also poorly understood. In vitro permeation testing (IVPT) is frequently used to evaluate drug absorption across skin, but the flux results from these studies are from a combination of mechanistic processes. METHOD Two different commercially available formulations of oxybenzone-containing sunscreen cream and continuous spray were evaluated by IVPT in human skin. Temperature influence between typical skin surface temperature (32°C) and an elevated 37°C was also assessed. Furthermore, a multiphysics-based simulation model was developed and utilized to compute the flux of modeled formulations. RESULTS Drug transport kinetics differed significantly between the two drug products. Flux was greatly influenced by the environmental temperature. The multiphysical simulation results could reproduce the experimental observations. The computation further indicated that the drug diffusion coefficient plays a dominant role in drug transport kinetics, influenced by the water content which is also affected by temperature. CONCLUSION The in vitro testing and bottom-up simulation shed insight into the mechanism of dermal absorption kinetics from dissimilar topical products.
Collapse
Affiliation(s)
- Paige N Zambrana
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Peng Hou
- Department of Industrial & Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Dana C Hammell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
13
|
Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds – an overview of in silico models. Int J Pharm 2022; 621:121808. [DOI: 10.1016/j.ijpharm.2022.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
|
14
|
Zheng F, Hou P, Corpstein CD, Park K, Li T. Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics. J Control Release 2021; 337:407-416. [PMID: 34324897 DOI: 10.1016/j.jconrel.2021.07.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022]
Abstract
Subcutaneously injected formulations have been developed for many biological products including monoclonal antibodies (mAbs). A knowledge gap nonetheless remains regarding the absorption and catabolism mechanisms and kinetics of a large molecule at the administration site. A multiscale pharmacokinetic (PK) model was thus developed by coupling multiphysics simulations of subcutaneous (SC) absorption kinetics with whole-body pharmacokinetic (PK) modeling, bridged by consideration of the presystemic clearance by the initial lymph. Our local absorption simulation of SC-injected albumin enabled the estimation of its presystemic clearance and led to the whole-body PK modeling of systemic exposure. The local absorption rate of albumin was found to be influential on the PK profile. Additionally, nineteen mAbs were explored via this multiscale simulation and modeling framework. The computational results suggest that stability propensities of the mAbs are correlated with the presystemic clearance, and electrostatic charges in the complementarity-determining region influence the local absorption rate. Still, this study underscores a critical need to experimentally determine various biophysical characteristics of a large molecule and the biomechanical properties of human skin tissues.
Collapse
Affiliation(s)
- Fudan Zheng
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | - Peng Hou
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | | | - Kinam Park
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | - Tonglei Li
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA.
| |
Collapse
|
15
|
Hou P, Zheng F, Corpstein CD, Xing L, Li T. Multiphysics Modeling and Simulation of Subcutaneous Injection and Absorption of Biotherapeutics: Sensitivity Analysis. Pharm Res 2021; 38:1011-1030. [PMID: 34080101 DOI: 10.1007/s11095-021-03062-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE A multiphysics simulation model was recently developed to capture major physical and mechanical processes of local drug transport and absorption kinetics of subcutaneously injected monoclonal antibody (mAb) solutions. To further explore the impact of individual drug attributes and tissue characteristics on the tissue biomechanical response and drug mass transport upon injection, sensitivity analysis was conducted and reported. METHOD Various configurations of injection conditions, drug-associated attributes, and tissue properties were simulated with the developed multiphysics model. Simulation results were examined with regard to tissue deformation, porosity change, and spatiotemporal distributions of pressure, interstitial fluid flow, and drug concentration in the tissue. RESULTS Injection conditions and tissue properties were found influential on the mechanical response of tissue and interstitial fluid velocity to various extents, leading to distinct drug concentration profiles. Intrinsic tissue porosity, lymphatic vessel density, and drug permeability through the lymphatic membrane were particularly essential in determining the local absorption rate of an mAb injection. CONCLUSION The sensitivity analysis study may shed light on the product development of an mAb formulation, as well as on the future development of the simulation method.
Collapse
Affiliation(s)
- Peng Hou
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, Indiana, 47907, West Lafayette, USA
| | - Fudan Zheng
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, Indiana, 47907, West Lafayette, USA
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, Indiana, 47907, West Lafayette, USA
| | - Lei Xing
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, 525 Stadium Mall Dr. RHPH Building, Indiana, 47907, West Lafayette, USA.
| |
Collapse
|