1
|
Zhu L, Zhao J, Li Q. Clinical study on prescription used for invigorating spleen, reinforcing kidney and warming yang combined with calcium dobesilate in treatment of senile diabetic nephropathy. Biotechnol Genet Eng Rev 2024; 40:1737-1747. [PMID: 37013894 DOI: 10.1080/02648725.2023.2196483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE To analyze the clinical effect of prescription used for invigorating spleen, reinforcing kidney and warming yang combined with calcium dobesilate to treat senile diabetic nephropathy (DN). METHODS The clinical data of 110 elderly patients with DN in our hospital from November 2020 to November 2021 were selected for retrospective analysis, and they were divided into the observation group (OG, n = 55) and the control group (CG, n = 55) according to the principle of random grouping. The CG received conventional therapy and calcium dobesilate, and the OG received conventional therapy, calcium dobesilate and prescription used for invigorating spleen, reinforcing kidney and warming yang to evaluate the clinical value of different treatment programs by comparing their clinical indicators after treatment. RESULTS The total effective rate of clinical treatment in the OG was clearly higher than the CG (P < 0.05). The blood glucose indexes, and the levels of ALB and RBP in the OG were visibly lower than the CG after treatment (P < 0.001). After treatment, the average levels of BUN and Cr in the OG were visibly lower than the CG (P < 0.001), while the average eGFR level was significantly higher than the CG (P < 0.001). CONCLUSION The prescription used for invigorating spleen, reinforcing kidney and warming yang combined with calcium dobesilate is a reliable method to improve the hemorheology indexes and renal function of DN patients, which benefits patients, and further studies are helpful to establish a better solution for such patients.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Endocrinology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianqun Zhao
- Department of Endocrinology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Li
- Department of Endocrinology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Raizada S, Obukhov AG, Bharti S, Wadhonkar K, Baig MS. Pharmacological targeting of adaptor proteins in chronic inflammation. Inflamm Res 2024; 73:1645-1656. [PMID: 39052063 DOI: 10.1007/s00011-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Inflammation, a biological response of the immune system, can be triggered by various factors such as pathogens, damaged cells, and toxic compounds. These factors can lead to chronic inflammatory responses, potentially causing tissue damage or disease. Both infectious and non-infectious agents, as well as cell damage, activate inflammatory cells and trigger common inflammatory signalling pathways, including NF-κB, MAPK, and JAK-STAT pathways. These pathways are activated through adaptor proteins, which possess distinct protein binding domains that connect corresponding interacting molecules to facilitate downstream signalling. Adaptor molecules have gained widespread attention in recent years due to their key role in chronic inflammatory diseases. METHODS In this review, we explore potential pharmacological agents that can be used to target adaptor molecules in chronic inflammatory responses. A comprehensive analysis of published studies was performed to obtain information on pharmacological agents. CONCLUSION This review highlights the therapeutic strategies involving small molecule inhibitors, antisense oligonucleotide therapy, and traditional medicinal compounds that have been found to inhibit the inflammatory response and pro-inflammatory cytokine production. These strategies primarily block the protein-protein interactions in the inflammatory signaling cascade. Nevertheless, extensive preclinical studies and risk assessment methodologies are necessary to ensure their safety.
Collapse
Affiliation(s)
- Shubhi Raizada
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India.
| |
Collapse
|
3
|
Jin J, Zhang M. Exploring the role of NLRP3 inflammasome in diabetic nephropathy and the advancements in herbal therapeutics. Front Endocrinol (Lausanne) 2024; 15:1397301. [PMID: 39104818 PMCID: PMC11299242 DOI: 10.3389/fendo.2024.1397301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.
Collapse
Affiliation(s)
- Jiangyuan Jin
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
4
|
Yang L, Yuan S, Wang R, Guo X, Xie Y, Wei W, Tang L. Exploring the molecular mechanism of berberine for treating diabetic nephropathy based on network pharmacology. Int Immunopharmacol 2024; 126:111237. [PMID: 37977063 DOI: 10.1016/j.intimp.2023.111237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus characterized by hyperglycemia, hyperlipidemia, albuminuria and edema. Increasing evidence indicated that berberine (BBR) could alleviate the occurrence and development of DN. However, the molecular mechanism underlying the beneficial effects of BBR in the treatment of DN remains unclear. METHODS The online public databases were chosen to screen the relevant targets of BBR and DN and the screened overlapped targets were analyzed by GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. The interaction between BBR and the key proteinwas verified by molecular docking and cellularthermalshiftassay. Additionally, the expression of key proteins and related indicators of DN were verified by immunofluorescence and western blot in vitro and in vivo. RESULTS We successfully identified 92 overlapped targets of BBR and DN based on network pharmacology. Notably, VEGFR2 was identified to be the main target of BBR. Meanwhile, we found that BBR exhibited a high binding affinity to VEGFR2 protein, as confirmed by molecular docking and CETSA. This binding led to interfering with the PI3K/AKT/mTOR signaling pathway. In addition, we found that BBR could inhibit the abnormal proliferation of mesangial cells and reduce the expression of downstream pathway protein in vitro and in vivo. Finally, BBR was found to effectively lower the level of blood glucose and improve kidney function in mice, highlighting its potential as a therapeutic agent for the treatment of DN. CONCLUSION Berberine interfered the PI3K/AKT/mTOR signaling pathway via targeting VEGFR2 protein, further led to the inhibition of abnormal proliferation of mesangial cells and ultimately resulted in improved renal function.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rongrong Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Guo
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China; Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Infammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Infammatory and Immune Medicine, Shushan District, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
5
|
Dinesh S, Sharma S, Chourasiya R. Therapeutic Applications of Plant and Nutraceutical-Based Compounds for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2024; 20:e050523216593. [PMID: 37151065 DOI: 10.2174/1573399819666230505140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus is a condition caused by a deficiency in insulin production or sensitivity that is defined by persistent hyperglycemia as well as disturbances in glucose, lipid, and protein metabolism. Uncurbed diabetes or incessant hyperglycemic condition can lead to severe complications, including renal damage, visual impairment, cardiovascular disease, neuropathy, etc., which promotes diabetes-associated morbidity and mortality rates. The therapeutic management of diabetes includes conventional medications and nutraceuticals as complementary therapies. Nutraceuticals are bioactive compounds derived from food sources that have health-promoting properties and are instrumental in the management and treatment of various maladies. Nutraceuticals are clinically exploited to tackle DM pathogenesis, and the clinical evidence suggests that nutraceuticals can modulate biochemical parameters related to diabetes pathogenesis and comorbidities. Hypoglycemic medicines are designed to mitigate DM in traditional medicinal practice. This review intends to emphasize and comment on the various therapeutic strategies available to manage this chronic condition, conventional drugs, and the potential role of nutraceuticals in managing the complexity of the disease and reducing the risk of complications. In contrast to conventional antihyperglycemic drugs, nutraceutical supplements offer a higher efficacy and lesser adverse effects. To substantiate the efficacy and safety of various functional foods in conjunction with conventional hypoglycemic medicines, additional data from clinical studies are required.
Collapse
Affiliation(s)
- Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, 560043, India
| | | |
Collapse
|
6
|
Hong Y, Wang J, Sun W, Zhang L, Xu X, Zhang K. Gallic acid improves the metformin effects on diabetic kidney disease in mice. Ren Fail 2023; 45:2183726. [PMID: 37723077 PMCID: PMC9987773 DOI: 10.1080/0886022x.2023.2183726] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES Metformin is an antidiabetic agent that is used as the first-line treatment of type 2 diabetes mellitus. Gallic acid is a type of phenolic acid that has been shown to be a potential drug candidate to treat diabetic kidney disease, an important complication of diabetes. We aimed to test whether a combination of gallic acid and metformin can exert synergetic effect on diabetic kidney disease in diabetic mice model. METHODS Streptozotocin (65 mg/kg) intraperitoneal injection was used to induce diabetic kidney disease in mice. The diabetic mice were treated with saline (Vehicle), gallic acid (GA) (30 mg/kg), metformin (MET) (200 mg/kg), or the combination of gallic acid (30 mg/kg) and metformin (200 mg/kg) (GA + MET). RESULTS Our results demonstrated that compared to the untreated diabetic mice, all three strategies (GA, MET, and GA + MET) exhibited various effects on improving renal morphology and functions, reducing oxidative stress in kidney tissues, and restoring AMP-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog 1 (SIRT1) signaling in kidney tissues of diabetic mice. Notably, the combination strategy (GA + MET) provided the most potent renal protection effects than any single strategies (GA or MET). CONCLUSION Our results support the hypothesis that gallic acid might serve as a potential supplement to metformin to enhance the therapeutical effect of metformin.
Collapse
Affiliation(s)
- Yan Hong
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jidong Wang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Wenjuan Sun
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lai Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Kaiyue Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| |
Collapse
|
7
|
Kaewin S, Poolsri W, Korkut GG, Patrakka J, Aiebchun T, Rungrotmongkol T, Sungkaworn T, Sukanadi IB, Chavasiri W, Muanprasat C. A sulfonamide chalcone AMPK activator ameliorates hyperglycemia and diabetic nephropathy in db/db mice. Biomed Pharmacother 2023; 165:115158. [PMID: 37473685 DOI: 10.1016/j.biopha.2023.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which currently lacks effective treatments. AMP-activated protein kinase (AMPK) stimulation by chalcones, a class of polyphenols abundantly found in plants, is proposed as a promising therapeutic approach for DM. This study aimed to identify novel chalcone derivatives with improved AMPK-stimulating activity in human podocytes and evaluate their mechanisms of action as well as in vivo efficacy in a mouse model of DN. Among 133 chalcone derivatives tested, the sulfonamide chalcone derivative IP-004 was identified as the most potent AMPK activator in human podocytes. Western blot analyses, intracellular calcium measurements and molecular docking simulation indicated that IP-004 activated AMPK by mechanisms involving direct binding at allosteric site of calcium-dependent protein kinase kinase β (CaMKKβ) without affecting intracellular calcium levels. Interestingly, eight weeks of intraperitoneal administration of IP-004 (20 mg/kg/day) significantly decreased fasting blood glucose level, activated AMPK in the livers, muscles and glomeruli, and ameliorated albuminuria in db/db type II diabetic mice. Collectively, this study identifies a novel chalcone derivative capable of activating AMPK in vitro and in vivo and exhibiting efficacy against hyperglycemia and DN in mice. Further development of AMPK activators based on chalcone derivatives may provide an effective treatment of DN.
Collapse
Affiliation(s)
- Suchada Kaewin
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Wanangkan Poolsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Gül Gizem Korkut
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thitinan Aiebchun
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Titiwat Sungkaworn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - I Butu Sukanadi
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand.
| |
Collapse
|
8
|
Yi ZY, Peng YJ, Hui BP, Liu Z, Lin QX, Zhao D, Wang Y, Liu X, Xie J, Zhang SH, Huang JH, Yu R. Zuogui-Jiangtang-Yishen decoction prevents diabetic kidney disease: Intervene pyroptosis induced by trimethylamine n-oxide through the mROS-NLRP3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154775. [PMID: 36990008 DOI: 10.1016/j.phymed.2023.154775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Nowadays, diabetic kidney disease (DKD) has become one of the most threatening to the end-stage renal diseases, and the early prevention of DKD is inevitable for Diabetes Mellitus (DM) patients. AIMS Pyroptosis, a programmed cell death that mediates renal inflammation induced early renal injury. The trimethylamine n-oxide (TMAO) was also an independent risk factor for renal injury. Here, the associations between TMAO-induced pyroptosis and pathogenesis of DKD were studied, and the potential mechanism of Zuogui-Jiangtang-Yishen (ZGJTYS) decoction to prevent DKD was further investigated. METHOD Using Goto-Kakizaki (GK) rats to establish the early DKD models. The 16S-ribosomal RNA (16S rRNA) sequencing, fecal fermentation and UPLC-MS targeted metabolism techniques were combined to explore the changes of gut-derived TMAO level under the background of DKD and the effects of ZGJTYS. The proximal convoluted tubule epithelium of human renal cortex (HK-2) cells was adopted to explore the influence of pyroptosis regulated by TMAO. RESULTS It was demonstrated that ZGJTYS could prevent the progression of DKD by regulating glucolipid metabolism disorder, improving renal function and delaying renal pathological changes. In addition, we illustrated that gut-derived TMAO could promote DKD by activating the mROS-NLRP3 axis to induce pyroptosis. Furthermore, besides interfering with the generation of TMAO through gut microbiota, ZGJTYS inhibited TMAO-induced pyroptosis with a high-glucose environment and the underlying mechanism was related to the regulation of mROS-NLRP3 axis. CONCLUSION Our results suggested that ZGJTYS inhibited the activation of pyroptosis by gut-derived TMAO via the mROS-NLRP3 axis to prevent DKD.
Collapse
Affiliation(s)
- Zi-Yang Yi
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Ya-Jun Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China
| | - Bo-Ping Hui
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Zhao Liu
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Qing-Xia Lin
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Di Zhao
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Xiu Liu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China
| | - Jing Xie
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Shui-Han Zhang
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China
| | - Jian-Hua Huang
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China.
| | - Rong Yu
- Hunan academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410013, P.R China; Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, P. R. China.
| |
Collapse
|
9
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
10
|
Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, Chen Y, Lv Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomed Pharmacother 2022; 156:113953. [DOI: 10.1016/j.biopha.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
11
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
12
|
Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomolecules 2022; 12:biom12091225. [PMID: 36139064 PMCID: PMC9496087 DOI: 10.3390/biom12091225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes mellitus. While there has been a great advance in our understanding of the pathogenesis of DN, no effective managements of this chronic kidney disease are currently available. Therefore, continuing to elucidate the underlying biochemical and molecular mechanisms of DN remains a constant need. In this regard, animal models of diabetes are indispensable tools. This review article highlights a widely used rodent model of non-obese type 2 diabetes induced by nicotinamide (NA) and streptozotocin (STZ). The mechanism underlying diabetes induction by combining the two chemicals involves blunting the toxic effect of STZ by NA so that only a percentage of β cells are destroyed and the remaining viable β cells can still respond to glucose stimulation. This NA-STZ animal model, as a platform for the testing of numerous antidiabetic and renoprotective materials, is also discussed. In comparison with other type 2 diabetic animal models, such as high-fat-diet/STZ models and genetically engineered rodent models, the NA-STZ model is non-obese and is less time-consuming and less expensive to create. Given that this unique model mimics certain pathological features of human DN, this model should continue to find its applications in the field of diabetes research.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|